Analytic geometry help

Kanimoto

New member
Joined
Sep 23, 2006
Messages
9
The lesson I'm currently studying is on "normal form of equations", and I need help with the following problem.

Find two values of K such that for each the line Kx + y = 5 is distant 4 from the origin.

I tried writing the equation in normal form, but it didn't seem to work out. What am I supposed to do instead? Thanks.
 
Using the distance formula for the distance from (0,0) to the line we get:
\(\displaystyle \L \frac{{\left| {K(0) + 1(0) - 5} \right|}}{{\sqrt {K^2 + 1} }} = 4\).

Solve for K.
 
Hello, Kanimoto!

If you don't know (or remember) that point-to-line formula,
. . we can still solve it by elementary methods.


]Find two values of K\displaystyle K such that for each the line Kx+y=5\displaystyle Kx\,+\,y\:=\:5
is distant 4 from the origin.

The given line L\displaystyle L is: y=Kx+5\displaystyle \:y\:=\:-Kx\,+\,5 . . . with slope -K\displaystyle \text{-}K

We want the line through (0,0)\displaystyle (0,0) perpendicular to L\displaystyle L.
. . Its slope is m=1K\displaystyle m = \frac{1}{K} and its equation is: y=1Kx\displaystyle y\:=\:\frac{1}{K}x

Find the intersection P\displaystyle P of the two lines: 1Kx=Kx+5\displaystyle \:\frac{1}{K}x\:=\:-Kx\,+\,5

We have: \(\displaystyle \,\frac{1}{K}x\,+\,Kx\:=\:5\;\;\Rightarrow\;\;\left(\frac{1}{K}\,+\,K\right)x\:=\:5\;\;\Rightarrow\;\;\left(\frac{1\,+\,K^2}{K\right)x\:=\:5\)

Hence: x=5K1+K2\displaystyle \:x\,=\,\frac{5K}{1\,+\,K^2}\: . . . and: y=51+k2\displaystyle \:y\:=\:\frac{5}{1\,+\,k^2}

. . We have located point P:    (5K1+K2,51+K2)\displaystyle P:\;\;\left(\frac{5K}{1+K^2},\,\frac{5}{1+K^2}\right)


Since distance OP=4\displaystyle OP\,=\,4, we have: (5K1+K2)2+(51+K2)2=42\displaystyle \:\left(\frac{5K}{1+K^2}\right)^2\,+\,\left(\frac{5}{1+K^2}\right)^2\:=\:4^2

. . 25K2+25=16(1+K2)2        16k4+7K29=0        (K2+1)(16K29)=0\displaystyle 25K^2\,+\,25 \:=\:16(1\,+\,K^2)^2\;\;\Rightarrow\;\;16k^4\,+\,7K^2\,-\,9\:=\:0\;\;\Rightarrow\;\;(K^2\,+\,1)(16K^2\,-\,9)\:=\:0


K2+1=0\displaystyle K^2\,+\,1\:=\:0 has no real roots,

but: \(\displaystyle 16K^2\,-\,9\:=\:0 \;\;\Rightarrow\;\;k^2\,=\,\frac{9}{16}\;\;\Rightarrow\;\;\L\fbox{K\,=\,\pm\frac{3}{4}}\)

 
Top