prove the following:
[math]a\geq 0\wedge b\geq 0 \implies a^2=b^2\implies a=b[/math]
proof:
(A) [math] a^2=b^2\implies (a+b)=0\vee (a-b)=0[/math]
[math]a\geq 0\wedge b\geq 0 [/math] =>[ (a>o or a=0)and (b>0 or b=0)] => [(a>o and b>o)or (a>0 and b=0) or (a=0 and b>0) or(a=0 and b=0)]
so we have:
1)(a>o and b>o) => a+b>0 => ¬(a+b=0) and using (A) we have a=b
2)(a>0 and b=0) => a+b=0 =a+0=0 => a=0=b => a=b
3) (a=0 and b>0) => a+b=0=0+b=0 => b=0=a => a=b
4)(a=0 and b=0) => a=0=b => a=b
Hence [math] a^2=b^2\implies a=b[/math]
Is that proof correct?
[math]a\geq 0\wedge b\geq 0 \implies a^2=b^2\implies a=b[/math]
proof:
(A) [math] a^2=b^2\implies (a+b)=0\vee (a-b)=0[/math]
[math]a\geq 0\wedge b\geq 0 [/math] =>[ (a>o or a=0)and (b>0 or b=0)] => [(a>o and b>o)or (a>0 and b=0) or (a=0 and b>0) or(a=0 and b=0)]
so we have:
1)(a>o and b>o) => a+b>0 => ¬(a+b=0) and using (A) we have a=b
2)(a>0 and b=0) => a+b=0 =a+0=0 => a=0=b => a=b
3) (a=0 and b>0) => a+b=0=0+b=0 => b=0=a => a=b
4)(a=0 and b=0) => a=0=b => a=b
Hence [math] a^2=b^2\implies a=b[/math]
Is that proof correct?