Alternating Series Problem

hgaon001

New member
Joined
May 17, 2009
Messages
39
The question: Classify each series as absolutely convergent, conditionally convergent, or divergent.

The summation from k=1 to infinity of [(-1)^(k+1)] k!/(2k-1)!
 
Test for convergence and/or divergence.

k=1(1)k+1k!(2k1)!\displaystyle \sum_{k=1}^{\infty}\frac{(-1)^{k+1}k!}{(2k-1)!}

Hint: Use the ratio test, and you'll find that the sum convergerces absolutely.
 
BigGlenntheHeavy said:
Test for convergence and/or divergence.

k=1(1)k+1k!(2k1)!\displaystyle \sum_{k=1}^{\infty}\frac{(-1)^{k+1}k!}{(2k-1)!}

Hint: Use the ratio test, and you'll find that the sum convergerces absolutely.

The thing is that the answer i got was (k+1)(2k-1)/(2k+1) and the book gets (k+1)/(2k+1)(2k) and i cant figure out how they get the 2k without the factorial at the bottom.
 
[(k+1)!(2(k+1)1)!][k!(2k1)!]1=[(k+1)!](2k1)!(2k+1)!(k)!=k+1(2k+1)(2k)\displaystyle \left[ {\frac{{\left( {k + 1} \right)!}}{{\left( {2\left( {k + 1} \right) - 1} \right)!}}} \right]\left[ {\frac{{k!}}{{\left( {2k - 1} \right)!}}} \right]^{ - 1} = \frac{{\left[ {\left( {k + 1} \right)!} \right]\left( {2k - 1} \right)!}}{{\left( {2k + 1} \right)!\left( k \right)!}} = \frac{{k + 1}}{{\left( {2k + 1} \right)\left( {2k} \right)}}
 
It's a matter of manipulating the factorials algebraically.

By the ratio test, we get:

(1)k+2(k+1)!(2(k+1)1)!(2k1)!(1)k+1k!\displaystyle \frac{(-1)^{k+2}(k+1)!}{(2(k+1)-1)!}\cdot\frac{(2k-1)!}{(-1)^{k+1}k!}

Note that:

(k+1)!=k!(k+1),   (2(k+1)1)!=(2k)!(2k+1),   (2k1)!=(2k)!2k\displaystyle (k+1)!=k!(k+1), \;\ (2(k+1)-1)!=(2k)!(2k+1), \;\ (2k-1)!=\frac{(2k)!}{2k}

Put it altogether and note the cancellations:

k!(k+1)(2k)!(2k+1)(2k)!2kk!=k+12k(2k+1)\displaystyle \frac{k!(k+1)}{(2k)!(2k+1)}\cdot\frac{\frac{(2k)!}{2k}}{k!}=\frac{k+1}{2k(2k+1)}

Note that (1)k+2(1)k+1=1\displaystyle \frac{(-1)^{k+2}}{(-1)^{k+1}}=-1, we could have disregarded that. so that gives us

k+12k(2k+1)\displaystyle \boxed{-\frac{k+1}{2k(2k+1)}}
 
\(\displaystyle [\frac{(k+1)!}{(2k+1)!}][\frac{(2k-1)!}{k!}] \ = [\ {\frac{(k+1)k!}{(2k+1)(2k)(2k-1)!}][\frac{(2k-1)!}{k!}]\)

 =(k+1)(2k+1)(2k) Hence, as k approaches infinity, the limit approaches 0 which is less than 1.\displaystyle \ = \frac{(k+1)}{(2k+1)(2k)} \ Hence, \ as \ k \ approaches \ infinity, \ the \ limit \ approaches \ 0 \ which \ is \ less \ than \ 1.

Ergo, the summation converges absolutely.\displaystyle Ergo, \ the \ summation \ converges \ absolutely.

Note: the absolute value of (-1)^(k+1) is one ,so we can disregard.
 
Top