Yet another way to do this: since the denominator is n- 10, put the numerator in terms of n- 10 also- look for numbers, a, b, c, and d such that\(\displaystyle a(n- 10)^3+ b(n- 10)^2+ c(n- 10)+ d= n^3- 100n+ 3\) for all n.
Multiplying the powers on the left out, \(\displaystyle a(n- 10)^3= an^3- 20an^2+ 300an- 1000a\), \(\displaystyle b(n- 10)^2= bn^2- 20bn+ 100b\) and \(\displaystyle c(n-10)= cn- 10c\) so that equation becomes
\(\displaystyle an^3+ (-30a+ b)n^2+ (300a- 20b+ c)n+ (-1000a+ 100b- 10c+ d)= n^3- 100n+ 3\)
Setting corresponding coefficients equal, we must have a= 1, -30a+ b= 0, 300a- 20b+ c= -100, -1000a+ 100b- 10c+ d= 3.
From a= 1, -30a+ b= -30+ b= 0 so b= 30. Then 300a- 20b+ c= 300- 600+ c= -100 so c= 200. Finally, -1000a+ 100b- 10c+ d= -1000+ 3000- 2000+ d= 3 and d= 3. That tells us that
\(\displaystyle \frac{n^3- 100n+ 3}{n- 10}= \frac{(n- 10)^3+ 30(n- 10)^2+ 200(n- 10)+ 3}{n- 10}= (n- 10)^2+ 30(n- 10)+ 200+ \frac{3}{n-10}\)
\(\displaystyle \frac{n^3- 100n+ 3}{n- 10}= n^2- 20n+ 100+ 30n- 300+ 200+ \frac{3}{n-10}= n^2+ 10n+ \frac{3}{n- 10}\)
exactly what soroban got.
(I admit his method is far simpler!)