Hello, tam14!
I am trying to prove \(\displaystyle \cos3\theta\:=\:4\cos^3\theta\,-\,3\cos\theta\)
from Euler's formula: \(\displaystyle e^{i\theta}\:=\:\cos\theta\,+\,i\sin\theta\)
If we "cube" Euler's Formula:
\(\displaystyle \;\;\left(e^{i\theta}\right)^3 \;=\;(\cos\theta\,+\,i\sin\theta)^3\;=\;\cos^3\theta\,+\,3i\cos^2\theta\sin\theta \,- \,3\cos\theta\sin^2\theta\,- \,i\sin^2\theta\;\)
[1]
But: \(\displaystyle \,\left(e^{i\theta}\right)^3\;=\;e^{3i\theta}\;=\;e^{i(3\theta)} \;=\;\cos3\theta\,+\,i\sin3\theta\;\)
[2]
Since
[1] and
[2] are equal, we have:
\(\displaystyle \;\;\;\cos3\theta\,+\,i\sin3\theta \;= \;\cos3\theta\,+\,3i\cos^2\theta\sin\theta\,-\,3\cos\theta\sin^2\theta\,-\,i\sin^3\theta\)
or: \(\displaystyle \,\cos3\theta\,+\,i\sin3\theta \;= \;(\cos^3\theta\,-\,3\cos\theta\sin^2\theta)\,+\,i(3\cos^2\theta\sin\theta\,-\,\sin^3\theta)\)
Equating real and imaginary components, we have:
\(\displaystyle \cos3\theta\;=\;\cos^3\theta\,-\,3\cos\theta\sin^2\theta \;= \;\cos^3\theta\,-\,3\cos\theta(1\,-\,\cos^2\theta) \;=\;4\cos^3\theta\,-\,3\cos\theta\)
\(\displaystyle \sin3\theta\;=\;3\cos^2\theta\sin\theta\,-\,\sin^3\theta\;=\;3(1\,-\,\sin^2\theta)\sin\theta\,-\,\sin^3\theta \;= \;3\sin\theta\,-\,4\sin^3\theta\)
And we have the "Triple-Angle Identities" for both sine and cosine!
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
If you desire the Triple-Angle Identity for tangent:
\(\displaystyle \tan3\theta \;= \;\L\frac{\sin3\theta}{\cos3\theta}\;= \;\frac{3\cos^2\theta\sin\theta\,-\,\sin^3\theta}{\cos^3\theta\,-\,3\cos\theta\sin^2\theta}\)
Divide top and bottom by \(\displaystyle cos^3\theta:\)
\(\displaystyle \tan3\theta\;=\;\L\frac{\frac{3\cos^2\theta\sin\theta}{\cos^3\theta}\,-\,\frac{\sin^3\theta}{\cos^3\theta}}{\frac{\cos^3\theta}{\cos^3\theta}\,-\,\frac{3\cos\theta\sin^2\theta}{\cos^3\theta}} \;= \;\frac{3\left(\frac{\sin\theta}{\cos\theta}\right)\,-\,\left(\frac{sin\theta}{\cos\theta}\right)^3}{1\,-\,3\left(\frac{\sin\theta}{\cos\theta}\right)^2} \;= \;\frac{3\tan\theta\,-\,\tan^3\theta}{1\,-\,3\tan^2\theta}\)