Hello, tam14!
I am trying to prove
cos3θ=4cos3θ−3cosθ
from Euler's formula:
eiθ=cosθ+isinθ
If we "cube" Euler's Formula:
(eiθ)3=(cosθ+isinθ)3=cos3θ+3icos2θsinθ−3cosθsin2θ−isin2θ [1]
But:
(eiθ)3=e3iθ=ei(3θ)=cos3θ+isin3θ [2]
Since
[1] and
[2] are equal, we have:
cos3θ+isin3θ=cos3θ+3icos2θsinθ−3cosθsin2θ−isin3θ
or:
cos3θ+isin3θ=(cos3θ−3cosθsin2θ)+i(3cos2θsinθ−sin3θ)
Equating real and imaginary components, we have:
cos3θ=cos3θ−3cosθsin2θ=cos3θ−3cosθ(1−cos2θ)=4cos3θ−3cosθ
sin3θ=3cos2θsinθ−sin3θ=3(1−sin2θ)sinθ−sin3θ=3sinθ−4sin3θ
And we have the "Triple-Angle Identities" for both sine and cosine!
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
If you desire the Triple-Angle Identity for tangent:
\(\displaystyle \tan3\theta \;= \;\L\frac{\sin3\theta}{\cos3\theta}\;= \;\frac{3\cos^2\theta\sin\theta\,-\,\sin^3\theta}{\cos^3\theta\,-\,3\cos\theta\sin^2\theta}\)
Divide top and bottom by
cos3θ:
\(\displaystyle \tan3\theta\;=\;\L\frac{\frac{3\cos^2\theta\sin\theta}{\cos^3\theta}\,-\,\frac{\sin^3\theta}{\cos^3\theta}}{\frac{\cos^3\theta}{\cos^3\theta}\,-\,\frac{3\cos\theta\sin^2\theta}{\cos^3\theta}} \;= \;\frac{3\left(\frac{\sin\theta}{\cos\theta}\right)\,-\,\left(\frac{sin\theta}{\cos\theta}\right)^3}{1\,-\,3\left(\frac{\sin\theta}{\cos\theta}\right)^2} \;= \;\frac{3\tan\theta\,-\,\tan^3\theta}{1\,-\,3\tan^2\theta}\)