Let Q = {alpha gamma} alpha, gamma are complex numbers)
{____ ______}
{-gamma alpha}
___
Ex. 2x2 matirces with complex entries (alpha=a+bi gamma=c+di alpha=a-bi
______ _____
gamma=c-di) alpha is the conjugate of alpha. Prove Q is a division ring. Use ordinary matrix addition and multiplication. For inverse use 1/k (____ )
(alpha -gamma)
(_____ )
(gamma alpha)
_____ ______
k= a^2 + b^2 + c^2 + d^2 = alpha alpha + gamma gamma
{____ ______}
{-gamma alpha}
___
Ex. 2x2 matirces with complex entries (alpha=a+bi gamma=c+di alpha=a-bi
______ _____
gamma=c-di) alpha is the conjugate of alpha. Prove Q is a division ring. Use ordinary matrix addition and multiplication. For inverse use 1/k (____ )
(alpha -gamma)
(_____ )
(gamma alpha)
_____ ______
k= a^2 + b^2 + c^2 + d^2 = alpha alpha + gamma gamma