absolute min/max values of y = x^2 + 2x^2/3, y = 1/(x^2 + 2x

endoo

New member
Joined
Oct 1, 2006
Messages
6
Find the absolute min and max values:

1) y = x^2 + 2x^2/3 on the interval [-2, 2]

2) y = 1/(x^2 + 2x + 5) on the interval [-2, 1]
 
So you've taken the derivatives, set them equal to zero, found the critical points, tested the interval endpoints, and... then what? Where are you stuck?

Please be specific. Thank you.

Eliz.
 
well i know the derivative of the first is:

y=2x + 4/3x^1/3 but now i dont know how to solve for x

then for the second: im not even sure how to do the derivative for that one
 
Re: absolute min/max values of y = x^2 + 2x^2/3, y = 1/(x^2

Hello, endoo!

I understand your difficulty . . .
Even if you handled the derivative in #1, the rest is quite tricky.


Find the absolute min and max values:

\(\displaystyle 1)\;y \:= \:x^2\,+\,2x^{\frac{2}{3}}\) on the interval \(\displaystyle [-2, 2]\)

The derivative equation is: \(\displaystyle \:y'\:=\:2x\,+\,\frac{4}{3}x^{-\frac{1}{3}}\;=\;0\)

We have: \(\displaystyle \:2x\;=\;-\frac{4}{3}x^{-\frac{1}{3}}\)

Multiply by \(\displaystyle x^{\frac{1}{3}}: \;\;2x^{\frac{4}{3}} \;=\;-\frac{4}{3}\;\;\Rightarrow\;\;x^{\frac{4}{3}}\;=\;-\frac{2}{3}\)

Raise both sides to the power \(\displaystyle \frac{3}{4}:\)
. . \(\displaystyle \left(x^{\frac{4}{3}}\right)^{\frac{3}{4}} \;= \;\left(-\frac{2}{3}\right)^{\frac{3}{4}}\;\;\Rightarrow\;\;x\:=\:\left(-\frac{2}{3}\right)^{\frac{3}{4}}\)

But \(\displaystyle \,\left(-\frac{2}{3}\right)^{\frac{3}{4}}\:=\:\left[\left(-\frac{2}{3}\right)^3\right]^{\frac{1}{4}} \:=\:\sqrt[4]{-\frac{8}{27}}\) . . . not a real number!
Hence, there are no horizontal tangents on that interval.


I tested the endpoints.
. . \(\displaystyle \text{At }x\,=\,-2:\;y\:=\:(-2)^2\,+\,2(-2)^{\frac{2}{3}} \:=\:4 + 2\sqrt[3]{4}\)
. . \(\displaystyle \text{At }x\,=\,2:\;y\:=\:(2)^2\,+\,2(-2)^{\frac{2}{3}} \:=\:4 + 2\sqrt[3]{4}\)

The endpoints are at the same "height", but the graph is not a horizontal line.
There must be an extreme point somewhere on the interval . . . but where?

Then I saw it . . . The derivative is: \(\displaystyle \L\,y'\:=\:2x\,+\,\frac{4}{3\sqrt[3]{x}}\)
When \(\displaystyle x\,=\,0\), the slope is undefined . . . There is a vertical tangent.

When \(\displaystyle x\,=\,0,\;y\:=\:0^2 + 2(0)^{\frac{2}{3}} \:=\:0\) . . . The origin (0,0) is on the graph.

There is a "cusp" at the origin.
The curve might be shaped like this:
Code:
                  |
        *         |         *
              *   |   *
                * | *
                 *|*
                  |
      - + - - - - * - - - - + -
       -2         |         2

Therefore: \(\displaystyle \:\begin{array}{cc}\text{Abs.max } & \left(\pm2,\:4+2\sqrt[3]{4}\right) \\ \text{Abs.min } & (0,0)\end{array}\)



\(\displaystyle 2)\;y \:= \:\L\frac{1}{x^2\,+\,2x\,+\,5}\) on the interval \(\displaystyle [-2, 1]\)

We have: \(\displaystyle \,y\:=\:(x^2\,+\,2x\,+\,5)^{-1}\)

Then: \(\displaystyle \,y' \:=\:-(x^2\,+\,2x\,+\,5)^{-2}(2x\,+\,2)\:=\:-\frac{2(x\,+\,1)}{(x^2\,+\,2x\,+\,5)^2}\)

And \(\displaystyle y'\,=\,0\) when \(\displaystyle x\,=\,-1\)

The second derivative (after a lot of simplifying) is: \(\displaystyle \L\,y''\;=\;\frac{2(x^2\,+\,6x\,-\,1)}{(x^2\,+\,2x\,+\,5)^3}\)

At \(\displaystyle x\,=\,-1:\;y''\,=\,-\frac{3}{16}\) . . . negative: concave down \(\displaystyle \cap\)
. . Hence, there is a relative maximum at \(\displaystyle \left(-1,\,\frac{1}{4}\right)\)

Test endpoints:
. . At \(\displaystyle x\,=\,-2:\;y\,=\,\frac{1}{5}\)
. . At \(\displaystyle x\,=\,1:\;y\,=\,\frac{1}{8}\)

Therefore: \(\displaystyle \:\begin{array}{cc}\text{Abs.max } & \left(-1,\,\frac{1}{4}\right) \\ \text{Abs.min } & \left(1,\,\frac{1}{8}\right) \end{array}\)

 
Top