absolute min/max values of y = x^2 + 2x^2/3, y = 1/(x^2 + 2x

endoo

New member
Joined
Oct 1, 2006
Messages
6
Find the absolute min and max values:

1) y = x^2 + 2x^2/3 on the interval [-2, 2]

2) y = 1/(x^2 + 2x + 5) on the interval [-2, 1]
 
So you've taken the derivatives, set them equal to zero, found the critical points, tested the interval endpoints, and... then what? Where are you stuck?

Please be specific. Thank you.

Eliz.
 
well i know the derivative of the first is:

y=2x + 4/3x^1/3 but now i dont know how to solve for x

then for the second: im not even sure how to do the derivative for that one
 
Re: absolute min/max values of y = x^2 + 2x^2/3, y = 1/(x^2

Hello, endoo!

I understand your difficulty . . .
Even if you handled the derivative in #1, the rest is quite tricky.


Find the absolute min and max values:

1)  y=x2+2x23\displaystyle 1)\;y \:= \:x^2\,+\,2x^{\frac{2}{3}} on the interval [2,2]\displaystyle [-2, 2]

The derivative equation is: y=2x+43x13  =  0\displaystyle \:y'\:=\:2x\,+\,\frac{4}{3}x^{-\frac{1}{3}}\;=\;0

We have: 2x  =  43x13\displaystyle \:2x\;=\;-\frac{4}{3}x^{-\frac{1}{3}}

Multiply by x13:    2x43  =  43        x43  =  23\displaystyle x^{\frac{1}{3}}: \;\;2x^{\frac{4}{3}} \;=\;-\frac{4}{3}\;\;\Rightarrow\;\;x^{\frac{4}{3}}\;=\;-\frac{2}{3}

Raise both sides to the power 34:\displaystyle \frac{3}{4}:
. . (x43)34  =  (23)34        x=(23)34\displaystyle \left(x^{\frac{4}{3}}\right)^{\frac{3}{4}} \;= \;\left(-\frac{2}{3}\right)^{\frac{3}{4}}\;\;\Rightarrow\;\;x\:=\:\left(-\frac{2}{3}\right)^{\frac{3}{4}}

But (23)34=[(23)3]14=8274\displaystyle \,\left(-\frac{2}{3}\right)^{\frac{3}{4}}\:=\:\left[\left(-\frac{2}{3}\right)^3\right]^{\frac{1}{4}} \:=\:\sqrt[4]{-\frac{8}{27}} . . . not a real number!
Hence, there are no horizontal tangents on that interval.


I tested the endpoints.
. . \(\displaystyle \text{At }x\,=\,-2:\;y\:=\:(-2)^2\,+\,2(-2)^{\frac{2}{3}} \:=\:4 + 2\sqrt[3]{4}\)
. . \(\displaystyle \text{At }x\,=\,2:\;y\:=\:(2)^2\,+\,2(-2)^{\frac{2}{3}} \:=\:4 + 2\sqrt[3]{4}\)

The endpoints are at the same "height", but the graph is not a horizontal line.
There must be an extreme point somewhere on the interval . . . but where?

Then I saw it . . . The derivative is: \(\displaystyle \L\,y'\:=\:2x\,+\,\frac{4}{3\sqrt[3]{x}}\)
When x=0\displaystyle x\,=\,0, the slope is undefined . . . There is a vertical tangent.

When x=0,  y=02+2(0)23=0\displaystyle x\,=\,0,\;y\:=\:0^2 + 2(0)^{\frac{2}{3}} \:=\:0 . . . The origin (0,0) is on the graph.

There is a "cusp" at the origin.
The curve might be shaped like this:
Code:
                  |
        *         |         *
              *   |   *
                * | *
                 *|*
                  |
      - + - - - - * - - - - + -
       -2         |         2

Therefore: Abs.max (±2,4+243)Abs.min (0,0)\displaystyle \:\begin{array}{cc}\text{Abs.max } & \left(\pm2,\:4+2\sqrt[3]{4}\right) \\ \text{Abs.min } & (0,0)\end{array}



\(\displaystyle 2)\;y \:= \:\L\frac{1}{x^2\,+\,2x\,+\,5}\) on the interval [2,1]\displaystyle [-2, 1]

We have: \(\displaystyle \,y\:=\:(x^2\,+\,2x\,+\,5)^{-1}\)

Then: y=(x2+2x+5)2(2x+2)=2(x+1)(x2+2x+5)2\displaystyle \,y' \:=\:-(x^2\,+\,2x\,+\,5)^{-2}(2x\,+\,2)\:=\:-\frac{2(x\,+\,1)}{(x^2\,+\,2x\,+\,5)^2}

And y=0\displaystyle y'\,=\,0 when x=1\displaystyle x\,=\,-1

The second derivative (after a lot of simplifying) is: \(\displaystyle \L\,y''\;=\;\frac{2(x^2\,+\,6x\,-\,1)}{(x^2\,+\,2x\,+\,5)^3}\)

At x=1:  y=316\displaystyle x\,=\,-1:\;y''\,=\,-\frac{3}{16} . . . negative: concave down \displaystyle \cap
. . Hence, there is a relative maximum at (1,14)\displaystyle \left(-1,\,\frac{1}{4}\right)

Test endpoints:
. . At x=2:  y=15\displaystyle x\,=\,-2:\;y\,=\,\frac{1}{5}
. . At x=1:  y=18\displaystyle x\,=\,1:\;y\,=\,\frac{1}{8}

Therefore: Abs.max (1,14)Abs.min (1,18)\displaystyle \:\begin{array}{cc}\text{Abs.max } & \left(-1,\,\frac{1}{4}\right) \\ \text{Abs.min } & \left(1,\,\frac{1}{8}\right) \end{array}

 
Top