Since you know it converges, why not find out what to.
\(\displaystyle \L\\\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^{4}}\)
\(\displaystyle \L\\= \;\ -1+\frac{1}{16}-\frac{1}{81}+\frac{1}{256}-\frac{1}{625}+\frac{1}{1296}-...............\)
Notice, the odds are negative and the evens are positive.
ODDS: \(\displaystyle \L\\\displaystyle{-}\sum_{k=0}^{\infty}\frac{1}{(2k+1)^{4}}=\frac{{-\pi}^{4}}{96}\)
EVENS: \(\displaystyle \L\\\displaystyle\sum_{k=1}^{\infty}\frac{1}{(2k)^{4}}=\frac{{\pi}^{4}}{1440}\)
\(\displaystyle \L\\\frac{{\pi}^{4}}{1440}-\frac{{\pi}^{4}}{96}=\frac{-7{\pi}^{4}}{720}\approx{-0.947032829497...}\)