known conditions:
[math]P(b|a) = 0.6[/math][math]P(c|b) = 0.8[/math][math]P(c|\neg b) = 0.7[/math]
What I want to solve:
[math]P(b\cup c|a )[/math] (in the condition of "a" happen, at least one of b and c happen. )
I tried to break it up into:
[math]P(b|a) + P(c|a) - P(bc|a)[/math]
but the final part [imath]P(bc|a)[/imath] stuck me so long ...
[math]P(b|a) = 0.6[/math][math]P(c|b) = 0.8[/math][math]P(c|\neg b) = 0.7[/math]
What I want to solve:
[math]P(b\cup c|a )[/math] (in the condition of "a" happen, at least one of b and c happen. )
I tried to break it up into:
[math]P(b|a) + P(c|a) - P(bc|a)[/math]
but the final part [imath]P(bc|a)[/imath] stuck me so long ...