Thank you all for your replies. No, there is no bound on n, and no, this is definitely not a simple problem. I have managed, however, to solve it. The answer came to me, surprisingly enough, in my sleep.
Suppose n>1 , then 4|(2^n) and 4|(4^n) . Since n is odd and 3 = (-1) mod 4 then it holds 3^n = (-1) mod 4. We have therefore proven that for all n>1 the expression gives a remainder of 3 when diving by 4.
Looking at any perfect square at all we see that they all give a remainder of either 0 or 1 with 4:
(0)^2 = 0 mod 4
(1)^2 = 1 mod 4
(2)^2 = 0 mod 4
(3)^2 = 1 mod 4.
Which means that for n>1 the given expression is not a perfect square.
We therefore only need to check n=1 which, conveniently, is a solution, so the only solution is n=1.
I once again thank you for all your replies and exclaim once more how flawed our educational system is giving this to 8th graders. I am a 10th grader and could barely come up with this. Perhaps there is a more elegant solution I am simply failing to see?
Edit #1: Commenting further on the problem. For even n there are, I would at least believe, more solutions as the given expression gives a remainder of 1 with 4 bringing the possibility of the expression being a perfect square back.
Edit #2: Giving the problem for even n another good look we see that the expression is (-1)^2n + (0)^2n + (1)^2n = 2 mod 3 , and since no squares give a remainder of 2 when divided by 3 (easily proven similarly to how no squares give a remainder of 3 with 4) there are no such even numbers n.