Hello, everyone!
Here's a classic mind-boggler . . . hope you enjoy it.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
The Missing Intercept
The parametric equations: .\(\displaystyle x \ = \ \frac{1\ -\ t^2}{1\ +\ t^2}\) .and .\(\displaystyle y \ = \ \frac{2t}{1\ +\ t^2}\)
. . represent a unit circle, verified by showing that: \(\displaystyle x^2\ +\ y^2 \:= \:1\)
Find the intercepts.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Find the y-intercepts. .Let \(\displaystyle x = 0\), solve for \(\displaystyle y.\)
. . We have: .\(\displaystyle x \ = \ \frac{1\ -\ t^2}{1\ +\ t^2} \ = \ 0\qquad\Rightarrow\qquad 1 - t^2 \ = \ 0\quad\Rightarrow\quad t \ = \ \pm1\)
. . Then: .\(\displaystyle y \ = \ \frac{2(\pm1)}{1\ +\ (\pm1)^2} \ = \ \pm 1\)
. . Hence, the y-intercepts are: .\(\displaystyle (0,\pm1)\)
Find the x-intercepts. .Let \(\displaystyle y = 0\), solve for \(\displaystyle x.\)
. . We have: .\(\displaystyle y \ = \ \frac{2t}{1\ +\ t^2} \:= \:0\qquad\Rightarrow\qquad 2t = 0\qquad\Rightarrow\qquad t = 0\)
. . Then: .\(\displaystyle x \ = \ \frac{1\ -\ 0^2}{1\ +\ 0^2} \ = \ 1\)
. . Hence, the x-intercept is: .\(\displaystyle (1,0)\)
Wait! .We <u>know</u> there is a fourth intercept at \(\displaystyle (-1,0).\)
How did we miss it? .Did we make an error?
Here's a classic mind-boggler . . . hope you enjoy it.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
The Missing Intercept
The parametric equations: .\(\displaystyle x \ = \ \frac{1\ -\ t^2}{1\ +\ t^2}\) .and .\(\displaystyle y \ = \ \frac{2t}{1\ +\ t^2}\)
. . represent a unit circle, verified by showing that: \(\displaystyle x^2\ +\ y^2 \:= \:1\)
Find the intercepts.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Find the y-intercepts. .Let \(\displaystyle x = 0\), solve for \(\displaystyle y.\)
. . We have: .\(\displaystyle x \ = \ \frac{1\ -\ t^2}{1\ +\ t^2} \ = \ 0\qquad\Rightarrow\qquad 1 - t^2 \ = \ 0\quad\Rightarrow\quad t \ = \ \pm1\)
. . Then: .\(\displaystyle y \ = \ \frac{2(\pm1)}{1\ +\ (\pm1)^2} \ = \ \pm 1\)
. . Hence, the y-intercepts are: .\(\displaystyle (0,\pm1)\)
Find the x-intercepts. .Let \(\displaystyle y = 0\), solve for \(\displaystyle x.\)
. . We have: .\(\displaystyle y \ = \ \frac{2t}{1\ +\ t^2} \:= \:0\qquad\Rightarrow\qquad 2t = 0\qquad\Rightarrow\qquad t = 0\)
. . Then: .\(\displaystyle x \ = \ \frac{1\ -\ 0^2}{1\ +\ 0^2} \ = \ 1\)
. . Hence, the x-intercept is: .\(\displaystyle (1,0)\)
Wait! .We <u>know</u> there is a fourth intercept at \(\displaystyle (-1,0).\)
How did we miss it? .Did we make an error?