A parametric puzzler

soroban

Elite Member
Joined
Jan 28, 2005
Messages
5,586
Hello, everyone!

Here's a classic mind-boggler . . . hope you enjoy it.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

The Missing Intercept

The parametric equations: .x = 1  t21 + t2\displaystyle x \ = \ \frac{1\ -\ t^2}{1\ +\ t^2} .and .y = 2t1 + t2\displaystyle y \ = \ \frac{2t}{1\ +\ t^2}

. . represent a unit circle, verified by showing that: x2 + y2=1\displaystyle x^2\ +\ y^2 \:= \:1

Find the intercepts.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Find the y-intercepts. .Let x=0\displaystyle x = 0, solve for y.\displaystyle y.

. . We have: .x = 1  t21 + t2 = 01t2 = 0t = ±1\displaystyle x \ = \ \frac{1\ -\ t^2}{1\ +\ t^2} \ = \ 0\qquad\Rightarrow\qquad 1 - t^2 \ = \ 0\quad\Rightarrow\quad t \ = \ \pm1

. . Then: .y = 2(±1)1 + (±1)2 = ±1\displaystyle y \ = \ \frac{2(\pm1)}{1\ +\ (\pm1)^2} \ = \ \pm 1

. . Hence, the y-intercepts are: .(0,±1)\displaystyle (0,\pm1)


Find the x-intercepts. .Let y=0\displaystyle y = 0, solve for x.\displaystyle x.

. . We have: .y = 2t1 + t2=02t=0t=0\displaystyle y \ = \ \frac{2t}{1\ +\ t^2} \:= \:0\qquad\Rightarrow\qquad 2t = 0\qquad\Rightarrow\qquad t = 0

. . Then: .x = 1  021 + 02 = 1\displaystyle x \ = \ \frac{1\ -\ 0^2}{1\ +\ 0^2} \ = \ 1

. . Hence, the x-intercept is: .(1,0)\displaystyle (1,0)


Wait! .We <u>know</u> there is a fourth intercept at (1,0).\displaystyle (-1,0).

How did we miss it? .Did we make an error?
 
Nice one

the equations actually do not representa circle as x^2 + y ^2 do not turn out to be 1
 
(1t21+t2)2+(2t1+t2)2\displaystyle \left(\frac{1 - t^2}{1 + t^2}\right)^2 + \left(\frac{2t}{1 + t^2}\right)^2

=(1t2)2+(2t)2(1+t2)2\displaystyle = \frac{(1 - t^2)^2 + (2t)^2}{(1 + t^2)^2}

=12t2+t4+4t2(1+t2)2\displaystyle = \frac{1 - 2t^2 + t^4 + 4t^2}{(1 + t^2)^2}

=1+2t2+t41+2t2+t4=1\displaystyle = \frac{1 + 2t^2 + t^4}{1 + 2t^2 + t^4} = 1

It's not a unit circle though...
 
The problem, (trick?), is in domain of the parameter.
In fact, Unco is correct: it is not the unit circle.
There is no value of t that gives the ‘missing intercept’.
The point (−1,0) corresponds to no value of t.
 
Top