\(\displaystyle One \ way.\)
\(\displaystyle a_n \ = \ \lim_{n\to\infty}\bigg(1+\frac{k}{n}\bigg)^n\)
\(\displaystyle Then \ ln|a_n| \ = \ ln\bigg[\lim_{n\to\infty}\bigg(1+\frac{k}{n}\bigg)^n\bigg], \ take \ natural \ logarithm \ of \ both \ sides\)
\(\displaystyle Ergo, \ ln|a_n| \ = \ \lim_{n\to\infty}ln\bigg(1+\frac{k}{n}\bigg)^n\bigg \ = \ \lim_{n\to\infty}nln\bigg(1+\frac{k}{n}\bigg), \ a_n \ is \ continuous \ as \ n\implies\infty\)
\(\displaystyle ln|a_n| \ = \ \lim_{n\to\infty}\frac{ln\bigg(1+\frac{k}{n}\bigg)}{\frac{1}{n}}, \ gives \ indeterminate \ form \ \frac{0}{0}, \ Marqui \ time.\)
\(\displaystyle ln|a_n| \ = \ \lim_{n\to\infty}\frac{kn}{n+k}, \ Marqui \ again, \ = \ \lim_{n\to\infty}\frac{k}{1} \ = \ k\)
\(\displaystyle Now, \ since \ ln|a_n| \ = \ k \ \implies \ a_n \ = \ e^k, \ QED\)
\(\displaystyle Note: \ I \ should \ have \ preface \ this, \ however \ I'll \ put \ it \ in \ here.\)
\(\displaystyle Limit \ of \ a \ Sequence: \ Let \ f \ be \ a \ function \ of \ a \ real \ variable \ such \ that \ \lim_{x\to\infty}f(x) \ = \ L\)
\(\displaystyle If \ \{a_n\} \ is \ a \ sequence \ such \ that \ f(n) \ = \ a_n \ for \ every \ positive \ integer \ n, \ then \ \lim_{n\to\infty}a_n \ = \ L\)