A limit

NRS

Junior Member
Joined
Sep 14, 2009
Messages
62
I can't seem to follow the process of taking this limit. I am testing for the convergence of a sequence:

[attachment=0:byto666p]DSC03623.jpg[/attachment:byto666p]
 

Attachments

  • DSC03623.jpg
    DSC03623.jpg
    129.8 KB · Views: 551
What is it you want to do?. Prove the limit exists?.

You can see that it does converge to e by plugging in larger and larger values of n.

But, to prove the limit exists takes a little more.

This is a very famous limit. Seen all across the math world in numerous places.
 
Oops, I probably should have been WAY more specific.

This is from the answer key, all I am given a[sub:184we4fh]n[/sub:184we4fh].

I just can't quite figure out how to solve the original equation as a limit.
 
We can get more rigorous, but try approaching it from the differentiability of ln(x) at x=1 using the definition of a derivative.

Since the derivative of ln(x) is 1 at x=1.

limn0ln(1+n)ln(1)n=limn0ln(1+n)n=limn0ln(1+n)1n=1\displaystyle \lim_{n\to 0}\frac{ln(1+n)-ln(1)}{n}=\lim_{n\to 0}\frac{ln(1+n)}{n}=\lim_{n\to 0} ln(1+n)^{\frac{1}{n}}=1

Taking e to both sides gives:

e=elimn0ln(1+n)1n\displaystyle e=e^{\lim_{n\to 0} ln(1+n)^{\frac{1}{n}}}

Since e is continuous, we have:

e=limn0eln(1+n)1n=limn0(1+n)1n\displaystyle e=\lim_{n\to 0} e^{ln(1+n)^{\frac{1}{n}}}=\lim_{n\to 0} (1+n)^{\frac{1}{n}}

Now, just amke the sub they mentioned to get the other forms.


We couuld also use 1n+1<nn+11xdx<1n,   n>0\displaystyle \frac{1}{n+1}<\int_{n}^{n+1}\frac{1}{x}dx<\frac{1}{n}, \;\ n>0

to show that limx0(1+1n)n=e\displaystyle \lim_{x\to 0}\left(1+\frac{1}{n}\right)^{n}=e
 
One way.\displaystyle One \ way.

an = limn(1+kn)n\displaystyle a_n \ = \ \lim_{n\to\infty}\bigg(1+\frac{k}{n}\bigg)^n

Then lnan = ln[limn(1+kn)n], take natural logarithm of both sides\displaystyle Then \ ln|a_n| \ = \ ln\bigg[\lim_{n\to\infty}\bigg(1+\frac{k}{n}\bigg)^n\bigg], \ take \ natural \ logarithm \ of \ both \ sides

\(\displaystyle Ergo, \ ln|a_n| \ = \ \lim_{n\to\infty}ln\bigg(1+\frac{k}{n}\bigg)^n\bigg \ = \ \lim_{n\to\infty}nln\bigg(1+\frac{k}{n}\bigg), \ a_n \ is \ continuous \ as \ n\implies\infty\)

lnan = limnln(1+kn)1n, gives indeterminate form 00, Marqui time.\displaystyle ln|a_n| \ = \ \lim_{n\to\infty}\frac{ln\bigg(1+\frac{k}{n}\bigg)}{\frac{1}{n}}, \ gives \ indeterminate \ form \ \frac{0}{0}, \ Marqui \ time.

lnan = limnknn+k, Marqui again, = limnk1 = k\displaystyle ln|a_n| \ = \ \lim_{n\to\infty}\frac{kn}{n+k}, \ Marqui \ again, \ = \ \lim_{n\to\infty}\frac{k}{1} \ = \ k

Now, since lnan = k      an = ek, QED\displaystyle Now, \ since \ ln|a_n| \ = \ k \ \implies \ a_n \ = \ e^k, \ QED

Note: I should have preface this, however Ill put it in here.\displaystyle Note: \ I \ should \ have \ preface \ this, \ however \ I'll \ put \ it \ in \ here.

Limit of a Sequence: Let f be a function of a real variable such that limxf(x) = L\displaystyle Limit \ of \ a \ Sequence: \ Let \ f \ be \ a \ function \ of \ a \ real \ variable \ such \ that \ \lim_{x\to\infty}f(x) \ = \ L

If {an} is a sequence such that f(n) = an for every positive integer n, then limnan = L\displaystyle If \ \{a_n\} \ is \ a \ sequence \ such \ that \ f(n) \ = \ a_n \ for \ every \ positive \ integer \ n, \ then \ \lim_{n\to\infty}a_n \ = \ L
 
Thankyou, but what do you mean when you say "Marqui"?

BTW What do you use to get the graphical functions up there?
 
What!!! You have never heard of "The Marqui Guillaume Francois Antoine de LHopital"?\displaystyle What!!! \ You \ have \ never \ heard \ of \ "The \ Marqui \ Guillaume \ Francois \ Antoine \ de \ L'Hopital"?

My astonishment knows no bounds.\displaystyle My \ astonishment \ knows \ no \ bounds.
 
I guess I'm just just not familiar enough with him to be on a first name basis yet... :oops:

Thanks!

P.S. I thought that looked misteriously like L^Hopital!
 
Top