[math]\text{Calculate a limit without using l'Hopital's rule, so we can use derivatives.}\\\\\text{let}\,\,x=3^{y+1}\,\,\text{since}\,\,x\to3\,\,\text{then}\,\,y+1=1\,\,\Longleftrightarrow y=0\,\,\text{so we got}\\\\\lim_{x\to3}\frac{\log_3(x)-1}{x-3}=\lim_{y\to0}\frac{y+1-1}{3^{y+1}-3}=\lim_{y\to0}\frac{y}{3(3^y-1)}=\frac{1}{3}\lim_{y\to0}\left[\left(\frac{3^y-1}{y}\right)^{-1}\right]\stackrel{\red{**}}{=}\frac{1}{3\ln(3)}\\\\\red{**}\,\,\text{using the limit}\,\,\lim_{x\to0}\frac{a^x-1}{x}=\ln(a)\\\\\text{I think that I'm right. Thank to all of you guys, for your time and help!}[/math]