etotheipi said:
Apparently I should use the identity a - b = (a^2 - b^2) / (a + b)
That's a good idea. Let's work in pieces:
. . . . .\(\displaystyle f(x)\, =\, \sqrt{1\, +\, e^x}\)
. . . . .\(\displaystyle f(x\, +\, h)\, =\, \sqrt{1\, +\, e^{x+h}}\)
. . . . .\(\displaystyle f(x\, +\, h)\, -\, f(x)\, =\, \sqrt{1\, +\, e^{x+h}}\, -\, \sqrt{1\, +\, e^x}\)
Now apply the identity that was suggested, by multiplying, top and bottom, by the conjugate of the above:
. . . . .\(\displaystyle \left(\frac{\sqrt{1\, +\, e^{x+h}}\, -\, \sqrt{1\, +\, e^x}}{1}\right)\,\left(\frac{\sqrt{1\, +\, e^{x+h}}\, +\, \sqrt{1\, +\, e^x}}{\sqrt{1\, +\, e^{x+h}}\, +\, \sqrt{1\, +\, e^x}}\right)\)
. . . . .\(\displaystyle \frac{(1\, +\, e^{x+h})\, -\, (1\, +\, e^x)}{\sqrt{1\, +\, e^{x+h}}\, +\, \sqrt{1\, +\, e^x}}\)
. . . . .\(\displaystyle \frac{e^{x+h}\, -\, e^x}{\sqrt{1\, +\, e^{x+h}}\, +\, \sqrt{1\, +\, e^x}}\)
. . . . .\(\displaystyle \frac{e^h e^x - e^x}{\sqrt{1\, +\, e^h e^x}\, +\, \sqrt{1\, +\, e^x}}\)
. . . . .\(\displaystyle \frac{e^x (e^h - 1)}{\sqrt{1\, +\, e^h e^x}\, +\, \sqrt{1\, +\, e^x}}\)
Now include the "divided by h" part:
. . . . .\(\displaystyle \frac{e^x (e^h - 1)}{h(\sqrt{1\, +\, e^h e^x}\, +\, \sqrt{1\, +\, e^x})}\)
The actual derivative is:
. . . . .\(\displaystyle \frac{e^x}{2\sqrt{1\, +\, e^x}}\)
...so clearly we're close. (The e[sup:16v67bek]h[/sup:16v67bek] in the first radical in the denominator will go to 1 as h goes to zero, leaving you with the desired sum.) But I'm drawing a blank on how to "cancel" the e[sup:16v67bek]h[/sup:16v67bek] - 1 and the h to finish this off....
Eliz.