a couple of fun limits...since the site is slow:)

galactus

Super Moderator
Staff member
Joined
Sep 28, 2005
Messages
7,216
Here are two fun 'challenge problems' if you wanna have a go. Chrisr?. BigGlenn?. Soroban?. or whomever. Right up your alley. :D

#1: Find the value of 'a' so that the following equation is true...WITHOUT L'HOPITAL.

limx(x+axa)x=e\displaystyle \lim_{x\to \infty}\left(\frac{x+a}{x-a}\right)^{x}=e

#2: limn(n+1)(n+2)(n+n)nn\displaystyle \lim_{n\to \infty}\frac{\sqrt[n]{(n+1)(n+2)\cdot \cdot \cdot (n+n)}}{n}

Once it is simplified, think about a Riemann sum.
 
The value of a wouldnt be 0.5 for the first one by any chance?\displaystyle The\ value\ of\ 'a'\ wouldn't\ be\ 0.5\ for\ the\ first\ one\ by\ any\ chance?
 
Yep, it is :D Good job.

(x+axa)x=(1+2axa)x\displaystyle \left(\frac{x+a}{x-a}\right)^{x}=\left(1+\frac{2a}{x-a}\right)^{x}
 
I don't have time for a proof, but if someone wants to verify, the second is asymptotic via

(n+1)(n+2)(n+n)1nn(k=1nn+k)n=(3n+12)n\displaystyle (n+1)(n+2)\dots (n+n) \approx \frac{1}{n^n}\cdot \left(\sum_{k=1}^n n+k \right)^n = \left(\frac{3n+1}{2}\right)^n

i.e. the original will have the same limit as

1n(3n+12)32\displaystyle \frac{1}{n}\left(\frac{3n+1}{2}\right) \to \frac{3}{2}
 
#2: limn(n+1)(n+2)(n+n)nn\displaystyle \lim_{n\to \infty}\frac{\sqrt[n]{(n+1)(n+2)\cdot \cdot \cdot (n+n)}}{n}

ln[(n+1)(n+2)...(n+n)nn]=1n[ln(n+1)+ln(n+2)+....+ln(n+n)]ln(n)\displaystyle ln\left[\frac{\sqrt[n]{(n+1)(n+2)...(n+n)}}{n}\right]=\frac{1}{n}\left[ln(n+1)+ln(n+2)+....+ln(n+n)\right]-ln(n)

=1n[ln(n(1+1n))+ln(n(1+2n))+....+ln(n(1+nn))]ln(n)\displaystyle =\frac{1}{n}\left[ln(n(1+\frac{1}{n}))+ln(n(1+\frac{2}{n}))+....+ln(n(1+\frac{n}{n}))\right]-ln(n)

1n[ln(1+1n)+ln(1+2n)+....+ln(1+nn)]+1n[ln(n)+ln(n)+...+ln(n)n terms]ln(n)\displaystyle \frac{1}{n}\left[ln(1+\frac{1}{n})+ln(1+\frac{2}{n})+....+ln(1+\frac{n}{n})\right]+\frac{1}{n}\left[\underbrace{ln(n)+ln(n)+...+ln(n)}_{\text{n terms}}\right]-ln(n)

=1n[ln(1+1n)+ln(1+2n)+....+ln(1+nn)]\displaystyle =\frac{1}{n}\left[ln(1+\frac{1}{n})+ln(1+\frac{2}{n})+....+ln(1+\frac{n}{n})\right]

If you notice, this is a Riemann sum:

01ln(1+x)dx=12ln(x)dx=2ln(2)1\displaystyle \int_{0}^{1}ln(1+x)dx=\int_{1}^{2}ln(x)dx=2ln(2)-1

e2ln(2)1=4e\displaystyle e^{2ln(2)-1}=\boxed{\frac{4}{e}}
 
Top