Here are two fun 'challenge problems' if you wanna have a go. Chrisr?. BigGlenn?. Soroban?. or whomever. Right up your alley.
#1: Find the value of 'a' so that the following equation is true...WITHOUT L'HOPITAL.
\(\displaystyle \lim_{x\to \infty}\left(\frac{x+a}{x-a}\right)^{x}=e\)
#2: \(\displaystyle \lim_{n\to \infty}\frac{\sqrt[n]{(n+1)(n+2)\cdot \cdot \cdot (n+n)}}{n}\)
Once it is simplified, think about a Riemann sum.
#1: Find the value of 'a' so that the following equation is true...WITHOUT L'HOPITAL.
\(\displaystyle \lim_{x\to \infty}\left(\frac{x+a}{x-a}\right)^{x}=e\)
#2: \(\displaystyle \lim_{n\to \infty}\frac{\sqrt[n]{(n+1)(n+2)\cdot \cdot \cdot (n+n)}}{n}\)
Once it is simplified, think about a Riemann sum.