a couple calc problems

mindshift

New member
Joined
Jun 12, 2005
Messages
9
i cant remember how to do these, so mabye you can help me.

what is the integral of:

sin(x)(e^x) dx

sin(x)cos(x) dx


thanks alot
 
Hello, mindshift!

I'll just jog your memory . . .

sin(x) (e<sup>x</sup>) dx
This will require integration by parts ... twice.

Begin with: . u .= .sin(x) . . . . . dv .= .e<sup>x</sup> dx

. . . .Then: . du .= .cos(x) dx . . . v .= .e<sup>x</sup>


sin(x) cos(x) dx
Straight substitution: . let .u = sin(x)
 
heres what i got:

for ∫ sin(x) (e<sup>x</sup>) dx :

e<sup>x</sup> sin(x) - (e<sup>x</sup> cos (x) + ∫ e<sup>x</sup> sin(x) dx )

i dont think i did it right

and for ∫ sin(x) cos(x) dx:

1/2 sin<sup>2</sup> x
 
mindshift said:
for ∫ sin(x) (e<sup>x</sup>) dx :

e<sup>x</sup> sin(x) - (e<sup>x</sup> cos (x) + ∫ e<sup>x</sup> sin(x) dx )

i dont think i did it right
It is fine, but you're not done.

∫ sin(x) (e<sup>x</sup>) dx = e<sup>x</sup> sin(x) - (e<sup>x</sup> cos (x) + ∫ e<sup>x</sup> sin(x) dx ) + C

∫ sin(x) (e<sup>x</sup>) dx = e<sup>x</sup> sin(x) - e<sup>x</sup> cos (x) - ∫ e<sup>x</sup> sin(x) dx + C

2*∫ sin(x) (e<sup>x</sup>) dx = e<sup>x</sup> sin(x) - e<sup>x</sup> cos (x) + C

∫ sin(x) (e<sup>x</sup>) dx = ½(e<sup>x</sup> sin(x) - e<sup>x</sup> cos (x)) + C<sub>1</sub>

You may wish to rewrite a few other possible ways.
 
mindshift said:
for ∫ sin(x) cos(x) dx:

1/2 sin<sup>2</sup> x
Funny, I have:
∫sin(x) cos(x) dx = -½cos<sup>2</sup>(x) + C

You tell me if that's the same answer.

(Hint: That constant of integration is NOT optional.)

Further, you could utilize sin(2*x) = 2*sin(x)*cos(x) and manage:

∫sin(x) cos(x) dx = -¼cos(2x) + C

You tell me if that's the same answer.

(Hint: That constant of integration is NOT optional.)
 
Top