You can use elementary row ops.
The idea is to switch the two sides, so that the identity matrix is on the left and the inverse is on the right.
Start with finding the inverse of:
\(\displaystyle \L\\A=\left[\begin{array}1&2&3\\2&5&3\\1&0&8\end{array}\right]\)
Write as:
\(\displaystyle \L\\\left[\begin{array}{ccc|ccc}1&2&3&1&0&0\\2&5&3&0&1&0\\1&0&8&0&0&1\end{array}\right]\)
Now, add -2 times the first row to the second and -1 times the first row to the third:
\(\displaystyle \L\\\left[\begin{array}{ccc|ccc}1&2&3&1&0&0\\0&1&-3&-2&1&0\\0&-2&5&-1&0&1\end{array}\right]\)
Add 2 times the second row to the third:
\(\displaystyle \L\\\left[\begin{array}{ccc|ccc}1&2&3&1&0&0\\0&1&-3&-2&1&0\\0&0&1&-5&2&1\end{array}\right]\)
Multiply the third row by -1:
\(\displaystyle \L\\\left[\begin{array}{ccc|ccc}1&2&3&1&0&0\\0&1&-3&-2&1&0\\0&0&1&5&-1&-1\end{array}\right]\)
Add 3 times the third row to the second and -3 times the third row to the first:
\(\displaystyle \L\\\left[\begin{array}{ccc|ccc}1&2&0&-14&6&3\\0&1&0&13&-5&-3\\0&0&1&5&-2&-2\end{array}\right]\)
Add -2 times the second row to the first:
\(\displaystyle \L\\\left[\begin{array}{ccc|ccc}1&0&0&-40&16&9\\0&1&0&13&-5&-3\\0&0&1&5&-2&-1\end{array}\right]\)
There. Your inverse is the right part:
\(\displaystyle \L\\A^{-1}=\begin{bmatrix}-40&16&9\\13&-5&-3\\5&-2&-1\end{bmatrix}\)