Here is a proof that 2=1. No arguments. I don't want to hear it!. I am right and that's all there is too it!!!!.
:wink:
For x>0:
\(\displaystyle x=\underbrace{1+1+1+.....+1}_{\text{x times}}\)
\(\displaystyle x^{2}=\underbrace{x+x+x+....+x}_{\text{x times}}\)
\(\displaystyle D(x^{2})=D\left(\underbrace{x+x+x+...+x}_{\text{x times}}\right)\)
\(\displaystyle D(x^{2})=\underbrace{D(x)+D(x)+D(x)+...+D(x)}_{\text{x times}}\)
\(\displaystyle 2x=\underbrace{1+1+1+....+1}_{\text{x times}}\)
\(\displaystyle 2x=x\)
\(\displaystyle 2=1\)
:wink:
For x>0:
\(\displaystyle x=\underbrace{1+1+1+.....+1}_{\text{x times}}\)
\(\displaystyle x^{2}=\underbrace{x+x+x+....+x}_{\text{x times}}\)
\(\displaystyle D(x^{2})=D\left(\underbrace{x+x+x+...+x}_{\text{x times}}\right)\)
\(\displaystyle D(x^{2})=\underbrace{D(x)+D(x)+D(x)+...+D(x)}_{\text{x times}}\)
\(\displaystyle 2x=\underbrace{1+1+1+....+1}_{\text{x times}}\)
\(\displaystyle 2x=x\)
\(\displaystyle 2=1\)