gautamthapa
New member
- Joined
- Jun 23, 2016
- Messages
- 8
\(\displaystyle \mbox{1. If }\, \displaystyle \, f(n)\, =\, \sum_{r = 1}^n\, \dfrac{1}{r},\,\)\(\displaystyle \mbox{ then }\, f\left(2^n\, -\, 1\right)\,\mbox{ lies between:}\)
. . . . .\(\displaystyle \mbox{a) }\, \dfrac{1}{2}\, \mbox{ and }\, 2\). . .\(\displaystyle \mbox{b) }\, \dfrac{1}{n}\, \mbox{ and }\, \dfrac{2}{n}\). . .\(\displaystyle \mbox{c) }\, \dfrac{n}{2}\, \mbox{ and }\, n\). . .\(\displaystyle \mbox{d) }\, \dfrac{1}{2^n}\, \mbox{ and }\, \dfrac{1}{2^{n-1}}\)
\(\displaystyle \mbox{2. If a four-digit number is chosen at random, the probability}\)
\(\displaystyle \mbox{that is contains not more than two different digits is:}\)
. . . . .\(\displaystyle \mbox{a) }\, \dfrac{13}{200}\). . .\(\displaystyle \mbox{b) }\, \dfrac{21}{373}\). . .\(\displaystyle \mbox{c) }\, \dfrac{1}{125}\). . .\(\displaystyle \mbox{d) }\, \dfrac{23}{9000}\)
\(\displaystyle \mbox{3. If }\, U_n\, =\, x^{2n}\, -\, x^n\, +\, 1,\, \mbox{ then the integer }\, n\, \mbox{ such that }\, U_n\, \)
\(\displaystyle \mbox{divisible by }\, U_1\, \mbox{ should be of the form:}\)
. . . . .\(\displaystyle \mbox{a) }\, 3m\, \pm\, 1,\, m\, \in\, \mathbb{N}\). . .\(\displaystyle \mbox{b) }\, 6m\, \pm\, 1,\, m\, \in\, \mathbb{N}\)
. . . . .\(\displaystyle \mbox{c) }\, m\, \pm\, 1,\, m\, in\, \mathbb{N}\). . . ..\(\displaystyle \mbox{d) }\, 4m\, \pm\, 1,\, m\, \in\, \mathbb{N}\)
\(\displaystyle \mbox{4. If }\, \alpha\, \mbox{ and }\, \beta\, \mbox{ are two distinct roots of }\, x^2\, +\, 2\,\left(\lambda\, -\, 3\right)\, x\, +\, 9\, =\, 0,\)
\(\displaystyle \mbox{find the real values of }\, \lambda\, \mbox{ such that }\, \alpha,\, \beta\, \in\, (-6,\, 1)\, \mbox{ are:}\)
. . . . .\(\displaystyle \mbox{a) }\,\lambda\, \in\, (6,\, \infty)\). . .\(\displaystyle \mbox{b) }\, \lambda\, \in\, [-6,\, 1)\). . .\(\displaystyle \mbox{c) }\, \left(6,\, \dfrac{13}{2}\right)\). . .\(\displaystyle \mbox{d) }\, \left(6,\, \dfrac{27}{4}\right)\)
\(\displaystyle \mbox{5. The area of a tria}\mbox{ngle whose vertices are the incenter, centroid, and }\)
\(\displaystyle \mbox{circumcenter of a tria}\mbox{ngle with sides }\, 14,\, 50,\, \mbox{ and }\, 48\, \mbox{ is:}\)
. . . . .\(\displaystyle \mbox{a) }\, 15\, \mbox{ sq. units}\). . .\(\displaystyle \mbox{b) }\, 16\, \mbox{ sq. units}\). . .\(\displaystyle \mbox{c) }\, 17\, \mbox{ sq. units}\). . .\(\displaystyle \mbox{d) }\, 18\, \mbox{ sq. units}\)
\(\displaystyle \mbox{6. If }\, \)\(\displaystyle \large{ Z^{(i)^{(i)^{(i)}}} }\)\(\displaystyle ,\, \mbox{ where }\, i\, =\, \sqrt{\strut -1\,},\, \mbox{ then }\, \Big|\, Z\, \Big|\, =\)
. . . . .\(\displaystyle \mbox{a) }\, 1\). . .\(\displaystyle \mbox{b) }\, e^{-\pi/2}\). . .\(\displaystyle \mbox{c) }\, \dfrac{\pi^2}{4}\). . .\(\displaystyle \mbox{d) }\, (-1)^{\,e^{-\pi/2}}\)
Paragraph (For Problems 7 to 10)
Let ABC be a triangle with inradius r and circumradius R. Its incircle touches the sides BC, CA, and AB and A1, B1, and C1, respectively. The incircle of triangle A1B1C1 touches its sides at A2, B2, and C2, respectively, and so on.
\(\displaystyle \mbox{7. In triangle }\, A_4 B_4 C_4,\, \mbox{ the value of }\, A_4\, =\)
. . . . .\(\displaystyle \mbox{a) }\, \dfrac{3\pi\, +\, A}{8}\). . .\(\displaystyle \mbox{b) }\, \dfrac{5\pi \, -\, A}{8}\). . .\(\displaystyle \mbox{c) }\, \dfrac{5 \pi \, -\, A}{16}\). . .\(\displaystyle \mbox{d) }\, \dfrac{5 \pi \, +\, A}{16}\)
\(\displaystyle \mbox{8. }\, \)\(\displaystyle \displaystyle \lim_{n\, \rightarrow \, \infty}\, A_n\, =\)
. . . . .\(\displaystyle \mbox{a) }\, 0\). . .\(\displaystyle \mbox{b) }\, \dfrac{\pi}{6}\). . .\(\displaystyle \mbox{c) }\, \dfrac{\pi}{4}\). . .\(\displaystyle \mbox{d) }\, \dfrac{\pi}{3}\)
\(\displaystyle \mbox{9. }\, \dfrac{B_1 C_1}{BC}\, =\)
. . . . .\(\displaystyle \mbox{a) }\, \sin\left(\dfrac{B}{2}\right)\, \sin\left(\dfrac{C}{2}\right)\). . . . . . . . . ..\(\displaystyle \mbox{b) }\,\cos\left(\dfrac{B}{2}\right)\, \cos\left(\dfrac{C}{2}\right)\)
. . . . .\(\displaystyle \mbox{c) }\, \cos\left(\dfrac{B\, -\, C}{2}\right)\, -\, \sin\left(\dfrac{A}{2}\right)\). . . . .\(\displaystyle \mbox{d) }\, \sin\left(\dfrac{A}{2}\right)\, +\, \cos\left(\dfrac{B\, -\, C}{2}\right)\)
\(\displaystyle \mbox{10. }\, \dfrac{\Delta A_1 B_1 C_1}{\Delta ABC}\, =\, \lambda,\, \dfrac{r}{R},\, \mbox{ where }\, \lambda\, =\)
. . . . .\(\displaystyle \mbox{a) }\, 1\). . .\(\displaystyle \mbox{b) }\, \dfrac{1}{2}\). . .\(\displaystyle \mbox{c) }\, \dfrac{1}{3}\). . .\(\displaystyle \mbox{d) }\, \dfrac{1}{4}\)
Sent from my SM-G920I using Tapatalk
. . . . .\(\displaystyle \mbox{a) }\, \dfrac{1}{2}\, \mbox{ and }\, 2\). . .\(\displaystyle \mbox{b) }\, \dfrac{1}{n}\, \mbox{ and }\, \dfrac{2}{n}\). . .\(\displaystyle \mbox{c) }\, \dfrac{n}{2}\, \mbox{ and }\, n\). . .\(\displaystyle \mbox{d) }\, \dfrac{1}{2^n}\, \mbox{ and }\, \dfrac{1}{2^{n-1}}\)
\(\displaystyle \mbox{2. If a four-digit number is chosen at random, the probability}\)
\(\displaystyle \mbox{that is contains not more than two different digits is:}\)
. . . . .\(\displaystyle \mbox{a) }\, \dfrac{13}{200}\). . .\(\displaystyle \mbox{b) }\, \dfrac{21}{373}\). . .\(\displaystyle \mbox{c) }\, \dfrac{1}{125}\). . .\(\displaystyle \mbox{d) }\, \dfrac{23}{9000}\)
\(\displaystyle \mbox{3. If }\, U_n\, =\, x^{2n}\, -\, x^n\, +\, 1,\, \mbox{ then the integer }\, n\, \mbox{ such that }\, U_n\, \)
\(\displaystyle \mbox{divisible by }\, U_1\, \mbox{ should be of the form:}\)
. . . . .\(\displaystyle \mbox{a) }\, 3m\, \pm\, 1,\, m\, \in\, \mathbb{N}\). . .\(\displaystyle \mbox{b) }\, 6m\, \pm\, 1,\, m\, \in\, \mathbb{N}\)
. . . . .\(\displaystyle \mbox{c) }\, m\, \pm\, 1,\, m\, in\, \mathbb{N}\). . . ..\(\displaystyle \mbox{d) }\, 4m\, \pm\, 1,\, m\, \in\, \mathbb{N}\)
\(\displaystyle \mbox{4. If }\, \alpha\, \mbox{ and }\, \beta\, \mbox{ are two distinct roots of }\, x^2\, +\, 2\,\left(\lambda\, -\, 3\right)\, x\, +\, 9\, =\, 0,\)
\(\displaystyle \mbox{find the real values of }\, \lambda\, \mbox{ such that }\, \alpha,\, \beta\, \in\, (-6,\, 1)\, \mbox{ are:}\)
. . . . .\(\displaystyle \mbox{a) }\,\lambda\, \in\, (6,\, \infty)\). . .\(\displaystyle \mbox{b) }\, \lambda\, \in\, [-6,\, 1)\). . .\(\displaystyle \mbox{c) }\, \left(6,\, \dfrac{13}{2}\right)\). . .\(\displaystyle \mbox{d) }\, \left(6,\, \dfrac{27}{4}\right)\)
\(\displaystyle \mbox{5. The area of a tria}\mbox{ngle whose vertices are the incenter, centroid, and }\)
\(\displaystyle \mbox{circumcenter of a tria}\mbox{ngle with sides }\, 14,\, 50,\, \mbox{ and }\, 48\, \mbox{ is:}\)
. . . . .\(\displaystyle \mbox{a) }\, 15\, \mbox{ sq. units}\). . .\(\displaystyle \mbox{b) }\, 16\, \mbox{ sq. units}\). . .\(\displaystyle \mbox{c) }\, 17\, \mbox{ sq. units}\). . .\(\displaystyle \mbox{d) }\, 18\, \mbox{ sq. units}\)
\(\displaystyle \mbox{6. If }\, \)\(\displaystyle \large{ Z^{(i)^{(i)^{(i)}}} }\)\(\displaystyle ,\, \mbox{ where }\, i\, =\, \sqrt{\strut -1\,},\, \mbox{ then }\, \Big|\, Z\, \Big|\, =\)
. . . . .\(\displaystyle \mbox{a) }\, 1\). . .\(\displaystyle \mbox{b) }\, e^{-\pi/2}\). . .\(\displaystyle \mbox{c) }\, \dfrac{\pi^2}{4}\). . .\(\displaystyle \mbox{d) }\, (-1)^{\,e^{-\pi/2}}\)
Paragraph (For Problems 7 to 10)
Let ABC be a triangle with inradius r and circumradius R. Its incircle touches the sides BC, CA, and AB and A1, B1, and C1, respectively. The incircle of triangle A1B1C1 touches its sides at A2, B2, and C2, respectively, and so on.
\(\displaystyle \mbox{7. In triangle }\, A_4 B_4 C_4,\, \mbox{ the value of }\, A_4\, =\)
. . . . .\(\displaystyle \mbox{a) }\, \dfrac{3\pi\, +\, A}{8}\). . .\(\displaystyle \mbox{b) }\, \dfrac{5\pi \, -\, A}{8}\). . .\(\displaystyle \mbox{c) }\, \dfrac{5 \pi \, -\, A}{16}\). . .\(\displaystyle \mbox{d) }\, \dfrac{5 \pi \, +\, A}{16}\)
\(\displaystyle \mbox{8. }\, \)\(\displaystyle \displaystyle \lim_{n\, \rightarrow \, \infty}\, A_n\, =\)
. . . . .\(\displaystyle \mbox{a) }\, 0\). . .\(\displaystyle \mbox{b) }\, \dfrac{\pi}{6}\). . .\(\displaystyle \mbox{c) }\, \dfrac{\pi}{4}\). . .\(\displaystyle \mbox{d) }\, \dfrac{\pi}{3}\)
\(\displaystyle \mbox{9. }\, \dfrac{B_1 C_1}{BC}\, =\)
. . . . .\(\displaystyle \mbox{a) }\, \sin\left(\dfrac{B}{2}\right)\, \sin\left(\dfrac{C}{2}\right)\). . . . . . . . . ..\(\displaystyle \mbox{b) }\,\cos\left(\dfrac{B}{2}\right)\, \cos\left(\dfrac{C}{2}\right)\)
. . . . .\(\displaystyle \mbox{c) }\, \cos\left(\dfrac{B\, -\, C}{2}\right)\, -\, \sin\left(\dfrac{A}{2}\right)\). . . . .\(\displaystyle \mbox{d) }\, \sin\left(\dfrac{A}{2}\right)\, +\, \cos\left(\dfrac{B\, -\, C}{2}\right)\)
\(\displaystyle \mbox{10. }\, \dfrac{\Delta A_1 B_1 C_1}{\Delta ABC}\, =\, \lambda,\, \dfrac{r}{R},\, \mbox{ where }\, \lambda\, =\)
. . . . .\(\displaystyle \mbox{a) }\, 1\). . .\(\displaystyle \mbox{b) }\, \dfrac{1}{2}\). . .\(\displaystyle \mbox{c) }\, \dfrac{1}{3}\). . .\(\displaystyle \mbox{d) }\, \dfrac{1}{4}\)
Sent from my SM-G920I using Tapatalk
Last edited by a moderator: