1/x - integration by parts

sallycats

New member
Joined
Jan 29, 2010
Messages
9
This has probably been done before, nor am I attempting to prove that 1=0, but I was unable to find other threads pertaining to this question, so here it is! :)

Use integration by parts to evaluate ?(1/x)dx.

Let u = 1/x, so du = -1/x[sup:3m2282ln]2[/sup:3m2282ln]dx
Let dv=dx, so v=x

Now ?(1/x)dx = uv - ?vdu = (1/x)(x) - ? (x)(-1/x[sup:3m2282ln]2[/sup:3m2282ln])dx = 1 + ?(1/x)dx

If ?(1/x)dx= 1 + ?(1/x)dx, then it seems that 0=1 which is obviously false.

My question is, what went wrong? How can this be possible?

I've given this some thought, and the conclusion I reached almost immediately is that when I did the above work, I did not consider a constant. If I add the constant when integrating, I still reach 0 + C = 1, or C = 1, which still does not seem to be right.

If my understanding is correct, C does not represent a specific number, such as 1. Adding C just accounts for the part of a function that has the derivative = 0, or in other words, any number.

Furthermore, would it be logical to conclude that ?(1/x)dx= 1 + ?(1/x)dx = 2 + ?(1/x)dx = 3 + ?(1/x)dx... ?
I would just need to continue integrating the right side of the equation, which would result with the original integral ?(1/x)dx with an additional +1 each time I integrate. Do each of these additions represent the constant?

I also know that ?(1/x)dx = ln|x|+C. How does that fit in with all of this? I feel like I am confusing myself, and could use a bit of guidance. :?
 
dv = dx,      dv = dx,      v+C0 = x+C1, implies v = x+C1C0\displaystyle dv \ = \ dx, \ \implies \ \int dv \ = \ \int dx, \ \implies \ v+C_0 \ = \ x+C_1, \ implies \ v \ = \ x+C_1-C_0

Let C2 = C1C0, then v = x+C2\displaystyle Let \ C_2 \ = \ C_1-C_0, \ then \ v \ = \ x +C_2

\(\displaystyle Note: \ For \ the \ sake \ of \ brevity, \ these \ steps \ are \ usually \ omitted, \but \ in \ particular \ cases,\)

1xdx, is one, they must be applied.\displaystyle \int \frac{1}{x}dx, \ is \ one, \ they \ must \ be \ applied.
 
Hello, everyone!

A similar fallacy:   sinxcosxdx\displaystyle \text{A similar fallacy: }\;\int\sin x\cos x\,dx

. . sinx(cosxdx)  =  12cos2 ⁣x[1]\displaystyle \int \sin x (\cos x\,dx) \;=\;\tfrac{1}{2}\cos^2\!x\quad[1]

. . cosx(sinxdx)  =  12sin2 ⁣x[2]\displaystyle \int \cos x(\sin x\,dx) \;=\;-\tfrac{1}{2}\sin^2\!x\quad [2]


Equate [1] and [2]:   12cos2 ⁣x  =  12sin2 ⁣x\displaystyle \text{Equate [1] and [2]: }\;\tfrac{1}{2}\cos^2\!x \;=\;-\tfrac{1}{2}\sin^2\!x

. . . . . . . . . .sin2 ⁣x+cos2 ⁣x  =  0\displaystyle \sin^2\!x + \cos^2\!x \;=\;0

. . . . Therefore: 1  =  0\displaystyle \text{Therefore: }\qquad\qquad 1 \;=\;0

 
The point to remember when dealing with the above is a definite integral is just a number,\displaystyle The \ point \ to \ remember \ when \ dealing \ with \ the \ above \ is \ a \ definite \ integral \ is \ just \ a \ number,

 whereas an indefinite integral is a family of functions.\displaystyle \ whereas \ an \ indefinite \ integral \ is \ a \ family \ of \ functions.

For the majority of cases, f(x)dx  f(x)dx unless their constants are equal.\displaystyle For \ the \ majority \ of \ cases, \ \int f(x)dx \ \ne \ \int f(x)dx \ unless \ their \ constants \ are \ equal.

And since each integral posesses an infinite number of constants, this possibility is slight, to\displaystyle And \ since \ each \ integral \ posesses \ an \ infinite \ number \ of \ constants, \ this \ possibility \ is \ slight, \ to

 say the least.\displaystyle \ say \ the \ least.

An example: Dx[x22+5] = x and Dx[x22+2] = x\displaystyle An \ example: \ D_x\bigg[\frac{x^{2}}{2}+5\bigg] \ = \ x \ and \ D_x\bigg[\frac{x^{2}}{2}+2\bigg] \ = \ x

However, (first one) xdx  (second one)xdx as their constants differ.\displaystyle However, \ (first \ one) \ \int xdx \ \ne \ (second \ one) \int xdx \ as \ their \ constants \ differ.
 
Thank you everyone, this has been very helpful.
BigGlenntheHeavy said:
The point to remember when dealing with the above is a definite integral is just a number,\displaystyle The \ point \ to \ remember \ when \ dealing \ with \ the \ above \ is \ a \ definite \ integral \ is \ just \ a \ number,

 whereas an indefinite integral is a family of functions.\displaystyle \ whereas \ an \ indefinite \ integral \ is \ a \ family \ of \ functions.
I did not think of it this way, but this is indeed very important!
 
Top