We can define the complement, [Math]E^{c}[/Math], of a subset E of [Math]R^{k}[/Math], k = 1 or 2, is the set of all elements of [Math]R^{k}[/Math] which are not in E, that is, [Math]E^{c} = [/Math]{[Math]x \in R^{k}[/Math]: [Math]x \notin E[/Math]}
Let [Math]k = 1[/Math] or [Math]2[/Math] then by the definition above [Math]E^{c} = [/Math]{[Math]m \in R^{k}[/Math] : [Math]\forall m[/Math] [Math]\in Z+, m \neq \frac{1}{m^{2}} [/Math]}
From here, we can define a cluster point and, apply it to [Math]E^{c}[/Math]. A point x is a cluster point of a set [Math]E[/Math] in [Math]R^{k}[/Math] where [Math]k = 1[/Math] or [Math]2[/Math], if for each [Math]r > 0[/Math], [Math]B_{r}(x)[/Math] contains infinitely many points of E, that is, [Math]B_{r}(x) \cap E[/Math] is an infinite set.
So we must show that for each [Math]r > 0[/Math], [Math]Br(0) \cap E^{c}[/Math] is infinite to prove that 0 is a cluster point of [Math]E^{c}[/Math].
Case 1: [Math]R^{1}[/Math] [Math]< 0[/Math]:
Case 2: [Math]R^{1}[/Math] [Math]> 0[/Math]:
Case 3: [Math]R^{1} = -1[/Math]:
Case 4: [Math]R^{1}[/Math] [Math]\in[/Math] (-1, 0):
Here I am a little confused because [Math]R^2[/Math] is no longer a number in [Math]R^1[/Math], so do the cases change to some like the below? Do you put it in terms of d(R^1, R^1)?
Case 1: [Math]R^{2}[/Math] [Math]< (0, 0)[/Math]:
Case 2: [Math]R^{2}[/Math] [Math]> (0, 0)[/Math]:
Case 3: [Math]R^{2} = (-1, 0)[/Math]:
Case 4: [Math]R^{2}[/Math] [Math]\in[/Math] {x: -1< x < 0, y: -1< y < 0} - Is this correct for a range similar to Case 4 above
Let [Math]k = 1[/Math] or [Math]2[/Math] then by the definition above [Math]E^{c} = [/Math]{[Math]m \in R^{k}[/Math] : [Math]\forall m[/Math] [Math]\in Z+, m \neq \frac{1}{m^{2}} [/Math]}
From here, we can define a cluster point and, apply it to [Math]E^{c}[/Math]. A point x is a cluster point of a set [Math]E[/Math] in [Math]R^{k}[/Math] where [Math]k = 1[/Math] or [Math]2[/Math], if for each [Math]r > 0[/Math], [Math]B_{r}(x)[/Math] contains infinitely many points of E, that is, [Math]B_{r}(x) \cap E[/Math] is an infinite set.
So we must show that for each [Math]r > 0[/Math], [Math]Br(0) \cap E^{c}[/Math] is infinite to prove that 0 is a cluster point of [Math]E^{c}[/Math].
Case 1: [Math]R^{1}[/Math] [Math]< 0[/Math]:
Case 2: [Math]R^{1}[/Math] [Math]> 0[/Math]:
Case 3: [Math]R^{1} = -1[/Math]:
Case 4: [Math]R^{1}[/Math] [Math]\in[/Math] (-1, 0):
Here I am a little confused because [Math]R^2[/Math] is no longer a number in [Math]R^1[/Math], so do the cases change to some like the below? Do you put it in terms of d(R^1, R^1)?
Case 1: [Math]R^{2}[/Math] [Math]< (0, 0)[/Math]:
Case 2: [Math]R^{2}[/Math] [Math]> (0, 0)[/Math]:
Case 3: [Math]R^{2} = (-1, 0)[/Math]:
Case 4: [Math]R^{2}[/Math] [Math]\in[/Math] {x: -1< x < 0, y: -1< y < 0} - Is this correct for a range similar to Case 4 above
Last edited: