classical methods

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,525
Solve the following differential equation using classical methods and the given initial conditions.

d2xdt2+2dxdt+2x=sin2t\displaystyle \frac{d^2 x}{dt^2} + 2\frac{dx}{dt} + 2x = \sin 2t

x(0)=2;   dxdt(0)=3\displaystyle x(0) = 2; \ \ \ \frac{dx}{dt}(0) = -3
 
First we solve the homogeneous.

d2xdt2+2dxdt+2x=0\displaystyle \frac{d^2 x}{dt^2} + 2\frac{dx}{dt} + 2x = 0

r=2±224(1)(2)2(1)=1±i\displaystyle r = \frac{-2\pm\sqrt{2^2 - 4(1)(2)}}{2(1)} = -1\pm i

Then, the solution is:

x(t)=c1etcost+c2etsint\displaystyle x(t) = c_1 e^{-t}\cos t + c_2 e^{-t}\sin t
 
Now we will look for a particular solution of the form xp(t)=Acos2t+Bsin2t\displaystyle x_p(t) = A\cos 2t + B\sin 2t

dxpdt=2Asin2t+2Bcos2t\displaystyle \frac{dx_p}{dt} = -2A\sin 2t + 2B\cos 2t

d2xpdt2=4Acos2t4Bsin2t\displaystyle \frac{d^2x_p}{dt^2} = -4A\cos 2t - 4B\sin 2t

When we substitute this in the original differential equation, we get:

4Acos2t4Bsin2t+2(2Asin2t+2Bcos2t)+2(Acos2t+Bsin2t)=sin2t\displaystyle -4A\cos 2t - 4B\sin 2t + 2(-2A\sin 2t + 2B\cos 2t) + 2(A\cos 2t + B\sin 2t) = \sin 2t

4Acos2t4Bsin2t4Asin2t+4Bcos2t+2Acos2t+2Bsin2t=sin2t\displaystyle -4A\cos 2t - 4B\sin 2t - 4A\sin 2t + 4B\cos 2t + 2A\cos 2t + 2B\sin 2t = \sin 2t

(4B2A)cos2t+(2B4A)sin2t=sin2t\displaystyle (4B - 2A)\cos 2t + (-2B - 4A)\sin 2t = \sin 2t

If we compare the left side with the right side, we see that:

4B2A=0\displaystyle 4B - 2A = 0
2B4A=1\displaystyle -2B - 4A = 1

This gives:

A=2B\displaystyle A = 2B
2B4(2B)=1\displaystyle -2B -4(2B) = 1
2B8B=1\displaystyle -2B - 8B = 1
10B=1\displaystyle -10B = 1
B=110\displaystyle B = -\frac{1}{10}

And

A=2(110)=15\displaystyle A = 2\left(-\frac{1}{10}\right) = -\frac{1}{5}

Then,

xp(t)=15cos2t110sin2t\displaystyle x_p(t) = -\frac{1}{5}\cos 2t - \frac{1}{10}\sin 2t

💪😒
 
The general solution is:

x(t)=c1etcost+c2etsint15cos2t110sin2t\displaystyle x(t) = c_1e^{-t}\cos t + c_2e^{-t}\sin t - \frac{1}{5}\cos 2t - \frac{1}{10}\sin 2t

All remained is just to apply the initial conditions. And the idea of those conditions is to find the two constants c1\displaystyle c_1 and c2\displaystyle c_2.

That's what we'll do in the next post.
 
Let us apply the first initial conditions.

x(0)=2=c115\displaystyle x(0) = 2 = c_1 - \frac{1}{5}

This gives:

c1=2+15=105+15=115\displaystyle c_1 = 2 + \frac{1}{5} = \frac{10}{5} + \frac{1}{5} = \frac{11}{5}
 
Let us apply the second initial condition.

dxdt=c1etcost+c1et(sint)c2etsint+c2etcost+25sin2t210cos2t\displaystyle \frac{dx}{dt} = -c_1e^{-t}\cos t + c_1e^{-t}(-\sin t) - c_2e^{-t}\sin t + c_2e^{-t}\cos t + \frac{2}{5}\sin 2t - \frac{2}{10}\cos 2t

dxdt(0)=3=c1+c2210=115+c2210\displaystyle \frac{dx}{dt}(0) = -3 = -c_1 + c_2 - \frac{2}{10} = -\frac{11}{5} + c_2 - \frac{2}{10}

This gives:

c2=115+2103=35\displaystyle c_2 = \frac{11}{5} + \frac{2}{10} - 3 = -\frac{3}{5}
 
The FINAL general solution is:

x(t)=115etcost35etsint15cos2t110sin2t\displaystyle x(t) = \frac{11}{5}e^{-t}\cos t - \frac{3}{5}e^{-t}\sin t - \frac{1}{5}\cos 2t - \frac{1}{10}\sin 2t
 
Top