Airy's equation bounces back

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,531
Find a series solution of Airy's equation yxy=0\displaystyle y'' - xy = 0 in the form n=0an(x1)n\displaystyle \sum_{n=0}^{\infty}a_n(x - 1)^n.
 
Find a series solution of Airy's equation yxy=0\displaystyle y'' - xy = 0 in the form n=0an(x1)n\displaystyle \sum_{n=0}^{\infty}a_n(x - 1)^n.
Please show us what you have tried and exactly where you are stuck.

Please follow the rules of posting in this forum, as enunciated at:


Please share your work/thoughts about this problem
 
A long time ago I solved the Airy's equation from scratch by using the form n=0anxn\displaystyle \sum_{n=0}^{\infty}a_nx^n. I was the only one on the earth to solve it like that, and I will always be the only one. Why? Because it is very difficult for others to understand the art of differential equations!

Now I am challenging myself to solve it again but with the new form n=0an(x1)n\displaystyle \sum_{n=0}^{\infty}a_n(x - 1)^n. There's a baker who works in the bakery where I always go to buy bread. He is a nice guy and is very interested in my posts in this forum. He follows my solutions in a daily basis. He was once a professor of mathematics, but got bored of teaching and decided to work in the bakery. He advised me to change the form the Airy's equation to y(x1)yy=0\displaystyle y'' - (x - 1)y - y = 0 before I solve it. He did not tell the reason and I did not ask, but I am guessing that the calculations will be easier.

So let us listen to the baker and beat this Airy again.

We have the differential equation:
y(x1)yy=0\displaystyle y'' - (x - 1)y - y = 0

And
I will let y=n=0an(x1)n\displaystyle y = \sum_{n=0}^{\infty}a_n(x - 1)^n

In the next post, we will take the first and the second derivatives of this function y\displaystyle y. Be in touch with this thread if you wanna enjoy the show!

💪🍞
 
Last edited:
y=n=0an(x1)n\displaystyle y = \sum_{n=0}^{\infty}a_n(x - 1)^n

y=n=0ann(x1)n1\displaystyle y' = \sum_{n=0}^{\infty}a_n n(x - 1)^{n-1}

y=n=0ann(n1)(x1)n2\displaystyle y'' = \sum_{n=0}^{\infty}a_n n(n-1)(x - 1)^{n-2}

💪😛
 
y=n=0ann(x1)n1\displaystyle y' = \sum_{n=0}^{\infty}a_n n(x - 1)^{n-1}INCORRECT
You're stealing my brand💪😭

y(x1)yy=0\displaystyle y'' - (x - 1)y - y = 0

Now we substitute what we got in the differential equation above.

n=2ann(n1)(x1)n2(x1)n=0an(x1)nn=0an(x1)n=0\displaystyle \sum_{n=2}^{\infty}a_n n(n-1)(x - 1)^{n-2} - (x - 1)\sum_{n=0}^{\infty}a_n(x - 1)^n - \sum_{n=0}^{\infty}a_n(x - 1)^n = 0
 
Now we will do trick 47\displaystyle 47. What's that? It's the hitman style \displaystyle \rightarrow we change any index n\displaystyle n that is not starting at 0\displaystyle 0 to 0\displaystyle 0.

n=0an+2(n+2)(n+1)(x1)nn=0an(x1)n+1n=0an(x1)n=0\displaystyle \sum_{n=0}^{\infty}a_{n+2} (n + 2)(n + 1)(x - 1)^{n} - \sum_{n=0}^{\infty}a_n(x - 1)^{n+1} - \sum_{n=0}^{\infty}a_n(x - 1)^n = 0

The fun has just started!

💪😍
 
We have solved the index problem, but a new problem popped up. The first and third terms contain (x1)n\displaystyle (x - 1)^n while the second term contains (x1)n+1\displaystyle (x - 1)^{n+1}. They don't match.

We can do this for now:

n=0an(x1)n+1=n=1an1(x1)n\displaystyle \sum_{n=0}^{\infty}a_n(x - 1)^{n+1} = \sum_{n=1}^{\infty}a_{n-1}(x - 1)^{n}
 
n=0an+2(n+2)(n+1)(x1)n=2a2+n=1an+2(n+2)(n+1)(x1)n\displaystyle \sum_{n=0}^{\infty}a_{n+2} (n + 2)(n + 1)(x - 1)^{n} = 2a_2 + \sum_{n=1}^{\infty}a_{n+2} (n + 2)(n + 1)(x - 1)^{n}

And

n=0an(x1)n=a0+n=1an(x1)n\displaystyle \sum_{n=0}^{\infty}a_n(x - 1)^n = a_0 + \sum_{n=1}^{\infty}a_n(x - 1)^n

Then, we have:

2a2+n=1an+2(n+2)(n+1)(x1)nn=1an1(x1)na0n=1an(x1)n=0\displaystyle 2a_2 + \sum_{n=1}^{\infty}a_{n+2} (n + 2)(n + 1)(x - 1)^{n} - \sum_{n=1}^{\infty}a_{n-1}(x - 1)^{n} - a_0 - \sum_{n=1}^{\infty}a_n(x - 1)^n = 0
 
Let us simplify it further.

2a2a0+n=1[an+2(n+2)(n+1)an1an](x1)n=0\displaystyle 2a_2 - a_0 + \sum_{n=1}^{\infty}\left[a_{n+2} (n + 2)(n + 1) - a_{n-1} - a_n\right](x - 1)^n = 0
 
Let us simplify it further.

2a2a0+n=1[an+2(n+2)(n+1)an1an](x1)n=0\displaystyle 2a_2 - a_0 + \sum_{n=1}^{\infty}\left[a_{n+2} (n + 2)(n + 1) - a_{n-1} - a_n\right](x - 1)^n = 0
This gives us:

2a2a0=0\displaystyle 2a_2 - a_0 = 0

And

an+2(n+2)(n+1)an1an=0\displaystyle a_{n+2} (n + 2)(n + 1) - a_{n-1} - a_n = 0

Or

a2=a02\displaystyle a_2 = \frac{a_0}{2}

And

an+2=an1an(n+2)(n+1)\displaystyle a_{n+2} = \frac{a_{n-1} - a_n}{(n + 2)(n + 1)}

It seems that we have a recursive formula in here😍
 
Let us use the recursion formula and calculate some arbitrary constants.

When n=1\displaystyle n = 1

a3=a0a16\displaystyle a_3 = \frac{a_0 - a_1}{6}


When n=2\displaystyle n = 2

a4=a1a212=a1a0212=2a1a024\displaystyle a_4 = \frac{a_1 - a_2}{12} = \frac{a_1 - \frac{a_0}{2}}{12} = \frac{2a_1 - a_0}{24}


When n=3\displaystyle n = 3

a5=a2a320=a02a0a1620=2a0+a1120\displaystyle a_5 = \frac{a_2 - a_3}{20} = \frac{\frac{a_0}{2} - \frac{a_0 - a_1}{6}}{20} = \frac{2a_0 + a_1}{120}


When n=4\displaystyle n = 4

a6=a3a430=a0a162a1a02430=5a06a1720\displaystyle a_6 = \frac{a_3 - a_4}{30} = \frac{\frac{a_0 - a_1}{6} - \frac{2a_1 - a_0}{24}}{30} = \frac{5a_0 - 6a_1}{720}
 
Let us calculate the first 7\displaystyle 7 terms.

y(x)=n=0an(x1)n=a0+a1(x1)+a2(x1)2+a3(x1)3+a4(x1)4+a5(x1)5+a6(x1)6+\displaystyle y(x) = \sum_{n=0}^{\infty}a_n(x - 1)^n = a_0 + a_1(x - 1) + a_2(x - 1)^2 + a_3(x - 1)^3 + a_4(x - 1)^4 + a_5(x - 1)^5 + a_6(x - 1)^6 + \cdots

💪😒
 
Let us now replace some of the constants with what we got from the recursion formula.

y(x)=a0+a1(x1)+a02(x1)2+(a0a16)(x1)3+(2a1a024)(x1)4+(2a0+a1120)(x1)5+(5a06a1720)(x1)6+\displaystyle y(x) = a_0 + a_1(x - 1) + \frac{a_0}{2}(x - 1)^2 + \left(\frac{a_0 - a_1}{6}\right)(x - 1)^3 + \left(\frac{2a_1 - a_0}{24}\right)(x - 1)^4 + \left(\frac{2a_0 + a_1}{120}\right)(x - 1)^5 + \left(\frac{5a_0 - 6a_1}{720}\right)(x - 1)^6 + \cdots
 
I have found a recursion bn+2=bn+nbn1 b_{n+2}=b_n+nb_{n-1} where bn=n!an b_n=n!a_n and b0=y(1),b1=y(1),b2=y(1). b_0=y(1)\, , \,b_1=y'(1)\, , \,b_2=y(1). I haven't found a closed formula for it since the lack of a bn+1 b_{n+1} term together with the asymmetric weight make the values jump a bit.

Here is my calculation:
y=xy,y=n=0an(x1)n,a0=y(1),a1=y(1) y''=xy\, , \,y=\sum_{n=0}^\infty a_n(x-1)^n\, , \,a_0=y(1)\, , \,a_1=y'(1) y=n=0ann(n1)(x1)n2=k=2akk(k1)(x1)k2=n=0an+2(n+2)(n+1)(x1)n=xn=0an(x1)n=(x1+1)n=0an(x1)n=n=0an(x1)n+n=0an(x1)n+1=n=0an(x1)n+k=1ak1(x1)k\begin{array}{lll} y'' &=\displaystyle{ \sum_{n=0}^{\infty}a_n n(n-1)(x - 1)^{n-2}=\sum_{k=2}^\infty a_k k(k-1)(x - 1)^{k-2}} \\[18pt] &=\displaystyle{\sum_{n=0}^\infty a_{n+2}(n+2)(n+1)(x-1)^n=x\sum_{n=0}^{\infty}a_n(x-1)^n}\\[18pt] &=\displaystyle{(x-1+1)\sum_{n=0}^{\infty}a_n(x-1)^n=\sum_{n=0}^{\infty}a_n(x-1)^n+\sum_{n=0}^\infty a_n(x-1)^{n+1}}\\[18pt] &=\displaystyle{\sum_{n=0}^{\infty}a_n(x-1)^n+\sum_{k=1}^\infty a_{k-1}(x-1)^{k}} \end{array}
2a2=a0=y(1),a1=y(1)an+2=an1+an(n+1)(n+2)=n!(n+2)!(an1+an),n1(n+2)!an+2=n!an+n(n1)!an1,n1bn:=n!an,b0=a0,b1=a1,b2=2a2=a0,n0bn+2=bn+nbn1,n1\begin{array}{lll} 2a_2=a_0=y(1)\, , \,a_1=y'(1)\\[12pt] a_{n+2}=\dfrac{a_{n-1}+a_n}{(n+1)(n+2)}=\dfrac{n!}{(n+2)!}(a_{n-1}+a_n)\, , \,n\geq 1\\[18pt] (n+2)!a_{n+2}=n!a_n+n\cdot (n-1)!a_{n-1}\, , \,n\geq 1\\[12pt] b_n:=n!a_n\, , \,b_0=a_0\, , \,b_1=a_1\, , \,b_2=2a_2=a_0\, , \,n\geq 0\\[12pt] b_{n+2}=b_n+nb_{n-1}\, , \,n\geq 1 \end{array}
However, bn1=bn+2bnn b_{n-1}=\dfrac{b_{n+2}-b_n}{n} goes like f(x)=f(x) f(x)=f'(x) and is thus exponential.
 
Last edited:
I got

[b2n1b2nb2n+1]=(k=1n1[0012k1002k+11])k=n1 most left[b1b0b0+b1]\begin{array}{lll} \begin{bmatrix} b_{2n-1}\\b_{2n} \\b_{2n+1} \\ \end{bmatrix}& =\underbrace{\left(\prod_{k=1}^{n-1}\begin{bmatrix}0&0&1\\2k&1&0\\0&2k+1&1\end{bmatrix}\right)}_{k=n-1\text{ most left}} \begin{bmatrix} b_{1}\\b_0 \\b_0+b_1 \\ \end{bmatrix} \end{array}
 
The matrix formula allows you to calculate all the an a_n but you should use a computer program. Already small values become inconvenient:
(b9b10b11)=(9!a910!a1011!a11)=(24152982831842186119)(a1a0a0+a1) \begin{pmatrix}b_9\\b_{10}\\b_{11}\end{pmatrix}=\begin{pmatrix}9!\,a_9\\10!\,a_{10}\\11!\,a_{11}\end{pmatrix}= \begin{pmatrix}24&15&29\\82&83&18\\42&186&119\end{pmatrix} \begin{pmatrix}a_1\\a_0\\a_0+a_1\end{pmatrix}
 
Top