thank you so much staple for the quick answer I put it into the formula but how am
I supposed to solve it with k in the formula??4k+-√16k-32k^2-28_________________ 4k
You substituted wrong expressions, and it's an equation.
x = -(-4k - 4) +/- √[(-4k - 4)^2 - 4(2k)(4k + 7)]
\(\displaystyle \ \ \ \ \ \ \ \)---------------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)2(2k)
x = 4k + 4 +/- √{[(-4)(k + 1)]^2 - 4(2k)(4k + 7)}
\(\displaystyle \ \ \ \ \ \ \ \)-----------------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)4k
x = 4k + 4 +/- √{16(k + 1)^2 - 4(2k)(4k + 7)}
\(\displaystyle \ \ \ \ \ \ \ \)--------------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)4k
x = 4k + 4 +/- √{4[4(k + 1)^2 - (2k)(4k + 7)]}
\(\displaystyle \ \ \ \ \ \ \ \)--------------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)4k
x = 4k + 4 +/- 2√{4(k + 1)^2 - (2k)(4k + 7)}
\(\displaystyle \ \ \ \ \ \ \ \)-------------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)4k
x = 2{(2k + 2 +/- √[4(k + 1)^2 - (2k)(4k + 7)]}
\(\displaystyle \ \ \ \ \ \ \ \)---------------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)4k
x = 2k + 2 +/- √[4(k + 1)^2 - (2k)(4k + 7)]
\(\displaystyle \ \ \ \ \ \ \ \)-----------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)2k
x = 2k + 2 +/- √[4(k^2 + 2k + 1) - (2k)(4k + 7)]
\(\displaystyle \ \ \ \ \ \ \ \)----------------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)2k
x = 2k + 2 +/- √[4k^2 + 8k + 4 - 8k^2 - 14k]
\(\displaystyle \ \ \ \ \ \ \ \)-------------------------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)2k
x = 2k + 2 +/- √[-4k^2 - 6k + 4]
\(\displaystyle \ \ \ \ \ \ \ \)-----------------------------------
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)2k
But, you don't need the Quadratic Formula. But I wanted you to see a correction
on it.
You just need the discriminant, b^2 - 4ac, as was discussed prior in this thread.