ahorn
New member
- Joined
- Mar 22, 2014
- Messages
- 44
>>Find 2 unit vectors that make an angle of 60o with v=⟨3,4⟩.
My working:
cos60o=21=5u12+u22⟨u1,u2⟩⋅⟨3,4⟩=5u12+u223u1+4u2
Now, u12+u22=1⇒u1=±1−u22
So, \(\displaystyle \frac{5}{2}=\pm3\sqrt{1-u_2^2}+4u_2\\\text{ }\\
36(1-u_2^2)=25-80u_2+64u_2^2\\\text{ }\\
100u_2^2-80u_2-11=0\\\text{ }\\
u_2=\frac{4\pm3\sqrt{3}}{10}\approx-0.120 \quad \text{or}\quad 0.920\\\text{ }\\
\therefore u_1\approx -0.393 \quad \text{or} \quad 0.993\\
\text{ }\\
\text{i.e. the solutions are}\quad \langle-0.393,0.920\rangle \text{ and } \langle0.993, -0.120\rangle\)
Are my solutions correct?
(Stewart: Calculus and Concepts, Section 9.3 no. 26)
My working:
cos60o=21=5u12+u22⟨u1,u2⟩⋅⟨3,4⟩=5u12+u223u1+4u2
Now, u12+u22=1⇒u1=±1−u22
So, \(\displaystyle \frac{5}{2}=\pm3\sqrt{1-u_2^2}+4u_2\\\text{ }\\
36(1-u_2^2)=25-80u_2+64u_2^2\\\text{ }\\
100u_2^2-80u_2-11=0\\\text{ }\\
u_2=\frac{4\pm3\sqrt{3}}{10}\approx-0.120 \quad \text{or}\quad 0.920\\\text{ }\\
\therefore u_1\approx -0.393 \quad \text{or} \quad 0.993\\
\text{ }\\
\text{i.e. the solutions are}\quad \langle-0.393,0.920\rangle \text{ and } \langle0.993, -0.120\rangle\)
Are my solutions correct?
(Stewart: Calculus and Concepts, Section 9.3 no. 26)