ahorn
New member
- Joined
- Mar 22, 2014
- Messages
- 44
>>Find 2 unit vectors that make an angle of \(\displaystyle 60^\text{o} \text{ with } \vec v=\langle 3,4 \rangle\).
My working:
\(\displaystyle \cos{60^\text{o}}=\frac{1}{2}= \frac{\langle u_1,u_2\rangle\cdot\langle 3,4\rangle}{5\sqrt{u_1^2+u_2^2}}=\frac{3u_1+4u_2}{5\sqrt{u_1^2+u_2^2}}\)
Now, \(\displaystyle u_1^2+u_2^2=1\quad\Rightarrow u_1=\pm\sqrt{1-u_2^2}\)
So, \(\displaystyle \frac{5}{2}=\pm3\sqrt{1-u_2^2}+4u_2\\\text{ }\\
36(1-u_2^2)=25-80u_2+64u_2^2\\\text{ }\\
100u_2^2-80u_2-11=0\\\text{ }\\
u_2=\frac{4\pm3\sqrt{3}}{10}\approx-0.120 \quad \text{or}\quad 0.920\\\text{ }\\
\therefore u_1\approx -0.393 \quad \text{or} \quad 0.993\\
\text{ }\\
\text{i.e. the solutions are}\quad \langle-0.393,0.920\rangle \text{ and } \langle0.993, -0.120\rangle\)
Are my solutions correct?
(Stewart: Calculus and Concepts, Section 9.3 no. 26)
My working:
\(\displaystyle \cos{60^\text{o}}=\frac{1}{2}= \frac{\langle u_1,u_2\rangle\cdot\langle 3,4\rangle}{5\sqrt{u_1^2+u_2^2}}=\frac{3u_1+4u_2}{5\sqrt{u_1^2+u_2^2}}\)
Now, \(\displaystyle u_1^2+u_2^2=1\quad\Rightarrow u_1=\pm\sqrt{1-u_2^2}\)
So, \(\displaystyle \frac{5}{2}=\pm3\sqrt{1-u_2^2}+4u_2\\\text{ }\\
36(1-u_2^2)=25-80u_2+64u_2^2\\\text{ }\\
100u_2^2-80u_2-11=0\\\text{ }\\
u_2=\frac{4\pm3\sqrt{3}}{10}\approx-0.120 \quad \text{or}\quad 0.920\\\text{ }\\
\therefore u_1\approx -0.393 \quad \text{or} \quad 0.993\\
\text{ }\\
\text{i.e. the solutions are}\quad \langle-0.393,0.920\rangle \text{ and } \langle0.993, -0.120\rangle\)
Are my solutions correct?
(Stewart: Calculus and Concepts, Section 9.3 no. 26)